Electro-osmotic flow (EOF) is widely used in microfluidic systems. Here, we report an analysis of the thermal effect on EOF under an imposed temperature difference. Our model not only considers the temperature-dependent thermophysical and electrical properties but also includes ion thermodiffusion. The inclusion of ion thermodiffusion affects ionic distribution, local electrical potential, as well as free charge density, and thus has effect on EOF. In particular, we formulate an analytical model for the thermal effect on a steady, fully developed EOF in slit microchannel. Using the regular perturbation method, we solve the model analytically to allow for decoupling several physical mechanisms contributing to the thermal effect on EOF. The parametric studies show that the presence of imposed temperature difference/gradient causes a deviation of the ionic concentration, electrical potential, and electro-osmotic velocity profiles from their isothermal counterparts, thereby giving rise to faster EOF. It is the thermodiffusion induced free charge density that plays a key role in the thermodiffusion induced electro-osmotic velocity.

References

1.
Piruska
,
A.
,
Gong
,
M.
,
Sweedler
,
J. V.
, and
Bohn
,
P. W.
,
2010
, “
Nanofluidics in Chemical Analysis
,”
Chem. Soc. Rev.
,
39
(
3
), pp.
1060
1072
.10.1039/B900409M
2.
Livak-Dahl
,
E.
,
Sinn
,
I.
, and
Burns
,
M.
,
2011
, “
Microfluidic Chemical Analysis Systems
,”
Annu. Rev. Chem. Biomol. Eng.
,
2
, pp.
325
353
.10.1146/annurev-chembioeng-061010-114215
3.
Erickson
,
D.
, and
Li
,
D.
,
2004
, “
Integrated Microfluidic Devices
,”
Anal. Chim. Acta
,
507
(
1
), pp.
11
26
.10.1016/j.aca.2003.09.019
4.
Marcos, Chun
,
Y.
,
Tiow
,
O. K.
, and
Neng
,
W. T.
,
2005
,
Elementary Electrokinetic Flow
,
Prentice-Hall
,
Singapore
.
5.
Laser
,
D. J.
, and
Santiago
,
J. G.
,
2004
, “
A Review of Micropumps
,”
J. Micromech. Microeng.
,
14
(
6
), pp.
R35
R64
.10.1088/0960-1317/14/6/R01
6.
Burgreen
,
D.
, and
Nakache
,
F. R.
,
1964
, “
Electrokinetic Flow in Ultrafine Capillary Slits
,”
J. Phys. Chem.
,
68
(
5
), pp.
1084
1091
.10.1021/j100787a019
7.
Rice
,
C. L.
, and
Whitehead
,
R.
,
1965
, “
Electrokinetic Flow in a Narrow Cylindrical Capillary
,”
J. Phys. Chem.
,
69
(
11
), pp.
4017
4024
.10.1021/j100895a062
8.
Kang
,
Y.
,
Yang
,
C.
, and
Huang
,
X.
,
2002
, “
Electroosmotic Flow in a Capillary Annulus With High Zeta Potentials
,”
J. Colloid Interface Sci.
,
253
(
2
), pp.
285
294
.10.1006/jcis.2002.8453
9.
Ghosal
,
S.
,
2002
, “
Lubrication Theory for Electro-osmotic Flow in a Microfluidic Channel of Slowly Varying Cross-Section and Wall Charge
,”
J. Fluid Mech.
,
459
(
1
), pp.
103
128
.10.1017/S0022112002007899
10.
Marcos, Kang
,
Y. J.
,
Ooi
,
K. T.
,
Yang
,
C.
, and
Wong
,
T. N.
,
2005
, “
Frequency Dependent Velocity and Vorticity Fields of Electroosmotic Flow in a Closed-End Cylindrical Microchannel
,”
J. Micromech. Microeng.
,
15
(
2
), pp.
301
312
.10.1088/0960-1317/15/2/009
11.
Xuan
,
X.
, and
Dongqing
,
L.
,
2005
, “
Electroosmotic Flow in Microchannels With Arbitrary Geometry and Arbitrary Distribution of Wall Charge
,”
J. Colloid Interface Sci.
,
289
(
1
), pp.
291
303
.10.1016/j.jcis.2005.03.069
12.
Patankar
,
N. A.
, and
Hu
,
H. H.
,
1998
, “
Numerical Simulation of Electroosmotic Flow
,”
Anal. Chem.
,
70
(
9
), pp.
1870
1881
.10.1021/ac970846u
13.
Ermakov
,
S. V.
,
Jacobson
,
S. C.
, and
Ramse
,
J. M.
,
1998
, “
Computer Simulations of Electrokinetic Transport in Microfabricated Channel Structures
,”
Anal. Chem.
,
70
(
21
), pp.
4494
4504
.10.1021/ac980551w
14.
Xuan
,
X.
, and
Li
,
D.
,
2004
, “
Analysis of Electrokinetic Flow in Microfluidic Networks
,”
J. Micromech. Microeng.
,
14
(
2
), pp.
290
298
.10.1088/0960-1317/14/2/018
15.
Ajdari
,
A.
,
1995
, “
Electro-Osmosis on Inhomogeneously Charged Surfaces
,”
Phys. Rev. Lett.
,
75
(
4
), pp.
755
758
.10.1103/PhysRevLett.75.755
16.
Stroock
,
A. D.
,
Weck
,
M.
,
Chiu
,
D. T.
,
Huck
,
W. T. S.
,
Kenis
,
P. J. A.
,
Ismagilov
,
R. F.
, and
Whitesides
,
G. M.
,
2000
, “
Patterning Electro-osmotic Flow With Patterned Surface Charge
,”
Phys. Rev. Lett.
,
84
(
15
), pp.
3314
3317
.10.1103/PhysRevLett.84.3314
17.
Fu
,
L.-M.
,
Lin
,
J.-Y.
, and
Yang
,
R.-J.
,
2003
, “
Analysis of Electroosmotic Flow With Step Change in Zeta Potential
,”
J. Colloid Interface Sci.
,
258
(
2
), pp.
266
275
.10.1016/S0021-9797(02)00078-4
18.
Wang
,
M.
, and
Kang
,
Q.
,
2009
, “
Electrokinetic Transport in Microchannels With Random Roughness
,”
Anal. Chem.
,
81
(
8
), pp.
2953
2961
.10.1021/ac802569n
19.
Ng
,
C.-O.
, and
Zhou
,
Q.
,
2012
, “
Dispersion Due to Electroosmotic Flow in a Circular Microchannel With Slowly Varying Wall Potential and Hydrodynamic Slippage
,”
Phys. Fluids
,
24
(
11
), p.
112002
.10.1063/1.4766598
20.
Chu
,
H. C. W.
, and
Ng
,
C.-O.
,
2012
, “
Electroosmotic Flow Through a Circular Tube With Slip–Stick Striped Wall
,”
ASME J. Fluids Eng.
,
134
(
11
), p.
111201
.10.1115/1.4007690
21.
Santiago
,
J. G.
,
2001
, “
Electroosmotic Flows in Microchannels With Finite Inertial and Pressure Forces
,”
Anal. Chem.
,
73
(
10
), pp.
2353
2365
.10.1021/ac0101398
22.
Huang
,
X.
,
Gordon
,
M. J.
, and
Zare
,
R. N.
,
1988
, “
Current-Monitoring Method for Measuring the Electroosmotic Flow Rate in Capillary Zone Electrophoresis
,”
Anal. Chem.
,
60
(
17
), pp.
1837
1838
.10.1021/ac00168a040
23.
Ren
,
L.
,
Escobedo-Canseco
,
C.
, and
Li
,
D.
,
2002
, “
A New Method of Evaluating the Average Electro-osmotic Velocity in Microchannels
,”
J. Colloid Interface Sci.
,
250
(
1
), pp.
238
242
.10.1006/jcis.2002.8299
24.
Wang
,
C.
,
Wong
,
T. N.
,
Yang
,
C.
, and
Ooi
,
K. T.
,
2007
, “
Characterization of Electroosmotic Flow in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer,
50
(
15–16
), pp.
3115
3121
.10.1016/j.ijheatmasstransfer.2006.11.035
25.
Paul
,
P. H.
,
Garguilo
,
M. G.
, and
Rakestraw
,
D. J.
,
1998
, “
Imaging of Pressure- and Electrokinetically Driven Flows Through Open Capillaries
,”
Anal. Chem.
,
70
(
13
), pp.
2459
2467
.10.1021/ac9709662
26.
Ross
,
D.
,
Johnson
,
T. J.
, and
Locascio
,
L. E.
,
2001
, “
Imaging of Electroosmotic Flow in Plastic Microchannels
,”
Anal. Chem.
,
73
(
11
), pp.
2509
2515
.10.1021/ac001509f
27.
Kim
,
M. J.
,
Beskok
,
A.
, and
Kihm
,
K. D.
,
2002
, “
Electro-osmotic-Driven Micro-Channel Flows: A Comparative Study of Microscopic Particle Image Velocimetry Measurements and Numerical Simulations
,”
Exp. Fluids
,
33
(
1
), pp.
170
180
.10.1007/s00348-002-0449-0
28.
Devasenathipathy
,
S.
, and
Santiago
,
J. G.
,
2002
, “
Particle Tracking Techniques for Electrokinetic Microchannel Flows
,”
Anal. Chem.
,
74
(
15
), pp.
3704
3713
.10.1021/ac011243s
29.
Sinton
,
D.
, and
Li
,
D.
,
2003
, “
Electroosmotic Velocity Profiles in Microchannels
,”
Colloids Surf. A.
,
222
(
1–3
), pp.
273
283
.10.1016/S0927-7757(03)00233-4
30.
Sinton
,
D.
,
2004
, “
Microscale Flow Visualization
,”
Microfluid. Nanofluid.
,
1
(
1
), pp.
2
21
.10.1007/s10404-004-0009-4
31.
Yan
,
D. G.
,
Yang
,
C.
, and
Huang
,
X. Y.
,
2007
, “
Effect of Finite Reservoir Size on Electroosmotic Flow in Microchannels
,”
Microfluid. Nanofluid.
,
3
(
3
), pp.
333
340
.10.1007/s10404-006-0135-2
32.
Yan
,
D.
,
Nguyen
,
N.-T.
,
Yang
,
C.
, and
Huang
,
X.
,
2006
, “
Visualizing the Transient Electroosmotic Flow and Measuring the Zeta Potential of Microchannels With a Micro-PIV Technique
,”
J. Chem. Phys.
,
124
(
2
), p.
021103
.10.1063/1.2162533
33.
Yan
,
D.
,
Yang
,
C.
,
Nguyen
,
N.-T.
, and
Huang
,
X.
,
2007
, “
Diagnosis of Transient Electrokinetic Flow in Microfluidic Channels
,”
Phys. Fluids
,
19
(
1
), p.
017114
.10.1063/1.2430502
34.
Wang
,
G.
,
Sas
,
I.
,
Jiang
,
H.
,
Janzen
,
W. P.
, and
Hodge
,
C. N.
,
2008
, “
Photobleaching-Based Flow Measurement in a Commercial Capillary Electrophoresis Chip Instrument
,”
Electrophoresis
,
29
(
6
), pp.
1253
1263
.10.1002/elps.200600855
35.
Kuang
,
C.
,
Yang
,
F.
,
Zhao
,
W.
, and
Wang
,
G.
,
2009
, “
Study of the Rise Time in Electroosmotic Flow Within a Microcapillary
,”
Anal. Chem.
,
81
(
16
), pp.
6590
6595
.10.1021/ac901017a
36.
Kuang
,
C.
,
Qiao
,
R.
, and
Wang
,
G.
,
2011
, “
Ultrafast Measurement of Transient Electroosmotic Flow in Microfluidics
,”
Microfluid. Nanofluid.
,
11
(
3
), pp.
353
358
.10.1007/s10404-011-0800-y
37.
Knox
,
J. H.
, and
McCormack
,
K. A.
,
1994
, “
Temperature Effects in Capillary Electrophoresis. 1: Internal Capillary Temperature and Effect Upon Performance
,”
Chromatographia,
38
(
3–4
), pp.
207
214
.10.1007/BF02290338
38.
Swinney
,
K.
, and
Bornhop
,
D. J.
,
2002
, “
Quantification and Evaluation of Joule Heating in On-Chip Capillary Electrophoresis
,”
Electrophoresis
,
23
(
4
), pp.
613
620
.10.1002/1522-2683(200202)23:4<613::AID-ELPS613>3.0.CO;2-F
39.
Tang
,
G. Y.
,
Yang
,
C.
,
Chai
,
C. J.
, and
Gong
,
H. Q.
,
2003
, “
Modeling of Electroosmotic Flow and Capillary Electrophoresis With the Joule Heating Effect: The Nernst–Planck Equation Versus the Boltzmann Distribution
,”
Langmuir
,
19
(
2
), pp.
10975
10984
.10.1021/la0301994
40.
Tang
,
G. Y.
,
Yang
,
C.
,
Chai
,
J. C.
, and
Gong
,
H. Q.
,
2004
, “
Joule Heating Effect on Electroosmotic Flow and Mass Species Transport in a Microcapillary
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
215
227
.10.1016/j.ijheatmasstransfer.2003.07.006
41.
Xuan
,
X.
,
Sinton
,
D.
, and
Li
,
D.
,
2004
, “
Thermal End Effects on Electroosmotic Flow in a Capillary
,”
Int. J. Heat Mass Transfer,
47
(
14–16
), pp.
3145
3157
.10.1016/j.ijheatmasstransfer.2004.02.023
42.
Xuan
,
X.
,
Xu
,
B.
,
Sinton
,
D.
, and
Li
,
D.
,
2004
, “
Electroosmotic Flow With Joule Heating Effects
,”
Lab Chip
,
4
(
3
), pp.
230
236
.10.1039/b315036d
43.
Tang
,
G. Y.
,
Yang
,
C.
,
Gong
,
H. Q.
,
Chai
,
C. J.
, and
Lam
,
Y. C.
,
2005
, “
On Electrokinetic Mass Transport in a Microchannel With Joule Heating Effect
,”
ASME J. Heat Transfer
,
127
(
6
), pp.
660
663
.10.1115/1.1865216
44.
Kang
,
Y.
,
Yang
,
C.
, and
Huang
,
X.
,
2005
, “
Joule Heating Induced Transient Temperature Field and Its Effects on Electroosmosis in a Microcapillary Packed With Microspheres
,”
Langmuir
,
21
(
16
), pp.
7598
7607
.10.1021/la050061g
45.
Tang
,
G.
,
Yan
,
D.
,
Yang
,
C.
,
Gong
,
H.
,
Chai
,
J. C.
, and
Lam
,
Y. C.
,
2006
, “
Assessment of Joule Heating and Its Effects on Electroosmotic Flow and Electrophoretic Transport of Solutes in Microfluidic Channels
,”
Electrophoresis
,
27
(
3
), pp.
628
639
.10.1002/elps.200500681
46.
Xuan
,
X.
,
2008
, “
Joule Heating in Electrokinetic Flow
,”
Electrophoresis
,
29
(
1
), pp.
33
43
.10.1002/elps.200700302
47.
Yang
,
C.
,
Li
,
D.
, and
Masliyah
,
J. H.
,
1998
, “
Modeling Forced Liquid Convection in Rectangular Microchannels With Electrokinetic Effects
,”
Int. J. Heat Mass Transfer
,
41
(
24
), pp.
4229
4249
.10.1016/S0017-9310(98)00125-2
48.
Maynes
,
D.
, and
Webb
,
B. W.
,
2003
, “
Fully-Developed Thermal Transport in Combined Pressure and Electro-osmotically Driven Flow in Microchannels
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
889
895
.10.1115/1.1597624
49.
Horiuchi
,
K.
, and
Dutta
,
P.
,
2004
, “
Joule Heating Effects in Electroosmotically Driven Microchannel Flows
,”
Int. J. Heat Mass Transfer,
47
(
14–16
), pp.
3085
3095
.10.1016/j.ijheatmasstransfer.2004.02.020
50.
Liechty
,
B. C.
,
Webb
,
B. W.
, and
Maynes
,
R. D.
,
2005
, “
Convective Heat Transfer Characteristics of Electro-osmotically Generated Flow in Microtubes at High Wall Potential
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2360
2371
.10.1016/j.ijheatmasstransfer.2005.01.019
51.
Chakraborty
,
S.
,
2006
, “
Analytical Solutions of Nusselt Number for Thermally Fully Developed Flow in Microtubes Under a Combined Action of Electroosmotic Forces and Imposed Pressure Gradients
,”
Int. J. Heat Mass Transfer,
49
(
3–4
), pp.
810
813
.10.1016/j.ijheatmasstransfer.2005.07.048
52.
Zade
,
A. Q.
,
Manzari
,
M. T.
, and
Hannani
,
S. K.
,
2007
, “
An Analytical Solution for Thermally Fully Developed Combined Pressure—Electroosmotically Driven Flow in Microchannels
,”
Int. J. Heat Mass Transfer,
50
(
5–6
), pp.
1087
1096
.10.1016/j.ijheatmasstransfer.2006.07.037
53.
Sanchez
,
S.
,
Mendez
,
F.
,
Martinez-Suastegui
,
L.
, and
Bautista
,
O.
,
2012
, “
Asymptotic Analysis for the Conjugate Heat Transfer Problem in an Electro-osmotic Flow With Temperature-Dependent Properties in a Capillary
,”
Int. J. Heat Mass Transfer,
55
(
25–26
), pp.
8163
8171
.10.1016/j.ijheatmasstransfer.2012.08.027
54.
Hawkins
,
B. G.
, and
Kirby
,
B. J.
,
2010
, “
Electrothermal Flow Effects in Insulating (Electrodeless) Dielectrophoresis Systems
,”
Eletrophoresis
,
31
(
22
), pp.
3622
3633
.10.1002/elps.201000429
55.
Sridharan
,
S.
,
Zhu
,
J.
,
Hu
,
G.
, and
Xuan
,
X.
,
2011
, “
Joule Heating Effects on Electroosmotic Flow in Insulator-Based Dielectrophoresis
,”
Electrophoresis
,
32
(
17
), pp.
2274
2281
.10.1002/elps.201100011
56.
Gagnon
,
Z. R.
, and
Chang
,
H.-C.
,
2009
, “
Electrothermal AC Eletro-osmosis
,”
Appl. Phys. Lett.
,
94
(
2
), p.
024101
.10.1063/1.3020720
57.
Wu
,
J.
,
Lian
,
M.
, and
Yang
,
K.
,
2007
, “
Micropumping of Biofluids by Alternating Current Electrothermal Effects
,”
Appl. Phys. Lett.
,
90
(23), p.
234103
.10.1063/1.2746413
58.
Ross
,
D.
, and
Locascio
,
L. E.
,
2002
, “
Microfluidic Temperature Gradient Focusing
,”
Anal. Chem.
,
74
(
11
), pp.
2556
2564
.10.1021/ac025528w
59.
Sommer
,
G. J.
,
Kim
,
S. M.
,
Littrell
,
R. J.
, and
Hasselbrink
,
E. F.
,
2007
, “
Theoretical and Numerical Analysis of Temperature Gradient Focusing Via Joule Heating
,”
Lab Chip
,
7
(
7
), pp.
898
907
.10.1039/b701894k
60.
Tang
,
G.
, and
Yang
,
C.
,
2008
, “
Numerical Modeling of Joule Heating Induced Temperature Gradient Focusing in Microfluidic Channels
,”
Electrophoresis
,
29
(
5
), pp.
1006
1012
.10.1002/elps.200700714
61.
Ge
,
Z.
, and
Yang
,
C.
,
2010
, “
Concentration Enhancement of Sample Solutes in a Sudden Expansion Microchannel With Joule Heating
,”
Int. J. Heat Mass Transfer,
53
(
13–14
), pp.
2722
2731
.10.1016/j.ijheatmasstransfer.2010.02.033
62.
Ge
,
Z.
,
Wang
,
W.
, and
Yang
,
C.
,
2011
, “
Towards High Concentration Enhancement of Microfluidic Temperature Gradient Focusing of Sample Solutes Using Combined AC and DC Field Induced Joule Heating
,”
Lab Chip
,
11
(
7
), pp.
1396
1402
.10.1039/c0lc00421a
63.
Bar-Cohen
,
A.
,
2013
, “
Gen-3 Thermal Management Technology: Role of Microchannels and Nanostructures in an Embedded Cooling Paradigm
,”
ASME J. Nanotechnol. Eng. Med.
,
4
(
2
), p.
020907
.10.1115/1.4023898
64.
Agar
,
J. N.
, and
Turner
,
J. C. R.
,
1960
, “
Thermal Diffusion in Solutions of Electrolytes
,”
Proc. R. Soc. London A
,
255
(
1282
), pp.
307
330
.10.1098/rspa.1960.0070
65.
Agar
,
J. N.
,
Mou
,
C. Y.
, and
Lin
,
J.
,
1989
, “
Single-Ion Heat of Transport in Electrolyte Solutions. A Hydrodynamic Theory
,”
J. Phys. Chem.
,
93
(
5
), pp.
2079
2082
.10.1021/j100342a073
66.
Würger
,
A.
,
2008
, “
Transport in Charged Colloids Driven by Thermoelectricity
,”
Phys. Rev. Lett.
,
101
(
10
), p.
108302
.10.1103/PhysRevLett.101.108302
67.
Ghonge
,
T.
,
Chakraborty
,
J.
,
Dey
,
R.
, and
Chakraborty
,
S.
,
2013
, “
Electrohydrodynamics Within the Electrical Double Layer in the Presence of Finite Temperature Gradients
,”
Phys. Rev. E
,
88
(
5
), p.
053020
.10.1103/PhysRevE.88.053020
68.
Masliyah
,
J. H.
, and
Bhattacharjee
,
S.
,
2006
,
Electrokinetic and Colloid Transport Phenomena
,
Wiley
,
Hoboken, NJ
.10.1002/0471799742
You do not currently have access to this content.