The entropy generation due to steady, incompressible micropolar fluid flow in a rectangular duct with slip and convective boundary conditions (CBCs) is calculated. An external uniform magnetic field is applied which is directed arbitrarily in a plane perpendicular to the flow direction. The governing partial differential equations of momentum, angular momentum, and energy are solved numerically using finite-difference method. The obtained velocity, microrotation, and temperature distributions are then used to evaluate the entropy generation and Bejan number. The effects of various parameters on the entropy generation and Bejan number are discussed through graphs.
Issue Section:
Heat and Mass Transfer
References
1.
Bejan
, A.
, 1979
, “A Study of Entropy Generation in Fundamental Convective Heat Transfer
,” ASME J. Heat Transfer
, 101
(4
), pp. 718
–725
.2.
Bejan
, A.
, 1982
, “Second Law Analysis in Heat Transfer and Thermal Design
,” Adv. Heat Transfer
, 15
, pp. 1
–58
.3.
Bejan
, A.
, 1996
, Entropy Generation Minimization
, CRC Press
, New York
.4.
Baytas
, A. C.
, 2000
, “Entropy Generation for Natural Convection in an Inclined Porous Cavity
,” Int. J. Heat Mass Transfer
, 43
(12
), pp. 2089
–2099
.5.
Sahin
, A. Z.
, and Ben-Mansour
, R.
, 2003
, “Entropy Generation in Laminar Fluid Flow Through a Circular Pipe
,” Entropy
, 5
(5
), pp. 404
–416
.6.
Heidary
, H.
, Pirmohammadi
, M.
, and Davoudi
, M.
, 2012
, “Control of Free Convection and Entropy Generation in Inclined Porous Media
,” Heat Transfer Eng.
, 33
(6
), pp. 565
–573
.7.
Eegunjobi
, A. S.
, and Makinde
, O.
, 2014
, “Entropy Generation Analysis in Transient Variable Viscosity Couette Flow Between Two Concentric Pipes
,” J. Therm. Sci. Technol.
, 9
(2
), p. JTST0008
.8.
Narusawa
, U.
, 2001
, “The Second-Law Analysis of Mixed Convection in Rectangular Ducts
,” Heat Mass Transfer
, 37
(2–3
), pp. 197
–203
.9.
Oztop
, H. F.
, 2005
, “Effective Parameters on Second Law Analysis for Semicircular Ducts in Laminar Flow and Constant Wall Heat Flux
,” Int. Commun. Heat Mass Transfer
, 32
(1
), pp. 266
–274
.10.
Ko
, T. H.
, and Ting
, K.
, 2006
, “Entropy Generation and Optimal Analysis for Laminar Forced Convection in Curved Rectangular Ducts: A Numerical Study
,” Int. J. Therm. Sci.
, 45
(2
), pp. 138
–150
.11.
Haji-Sheikh
, A.
, 2006
, “Fully Developed Heat Transfer to Fluid Flow in Rectangular Passages Filled With Porous Materials
,” ASME J. Heat Transfer
, 128
(6
), pp. 550
–556
.12.
Hooman
, K.
, Gurgenci
, H.
, and Merrikh
, A. A.
, 2007
, “Heat Transfer and Entropy Generation Optimization of Forced Convection in Porous-Saturated Ducts of Rectangular Cross-Section
,” Int. J. Heat Mass Transfer
, 50
(11
), pp. 2051
–2059
.13.
Jarungthammachote
, S.
, 2010
, “Entropy Generation Analysis for Fully Developed Laminar Convection in Hexagonal Duct Subjected to Constant Heat Flux
,” Energy
, 35
(12
), pp. 5374
–5379
.14.
Yang
, G.
, Wu
, J. Y.
, and Yan
, L.
, 2013
, “Flow Reversal and Entropy Generation Due to Buoyancy Assisted Mixed Convection in the Entrance Region of a Three Dimensional Vertical Rectangular Duct
,” Int. J. Heat Mass Transfer
, 67
, pp. 741
–751
.15.
Leong
, K. Y.
, and Ong
, H. C.
, 2014
, “Entropy Generation Analysis of Nanofluids Flow in Various Shapes of Cross Section Ducts
,” Int. Commun. Heat Mass Transfer
, 57
, pp. 72
–78
.16.
Eringen
, A. C.
, 1967
, “The Theory of Micropolar Fluids
,” J. Math. Mech.
, 16
(1), pp. 1
–18
.17.
Mahmud
, S.
, and Fraser
, R. A.
, 2004
, “Magnetohydrodynamic Free Convection and Entropy Generation in a Square Porous Cavity
,” Int. J. Heat Mass Transfer
, 47
(14
), pp. 3245
–3256
.18.
Ibanez
, G.
, and Cuevas
, S.
, 2010
, “Entropy Generation Minimization of a MHD (Magnetohydrodynamic) Flow in a Microchannel
,” Energy
, 35
(10
), pp. 4149
–4155
.19.
Aiboud
, S.
, and Saouli
, S.
, 2010
, “Entropy Analysis for Viscoelastic Magnetohydrodynamic Flow Over a Stretching Surface
,” Int. J. Non Linear Mech.
, 45
(5
), pp. 482
–489
.20.
Bouabid
, M.
, Hidouri
, N.
, Magherbi
, M.
, and Brahim
, A. B.
, 2011
, “Analysis of the Magnetic Field Effect on Entropy Generation at Thermosolutal Convection in a Square Cavity
,” Entropy
, 13
(5
), pp. 1034
–1054
.21.
Kiyasatfar
, M.
, Pourmahmoud
, N.
, Golzan
, M. M.
, and Mirzaee
, I.
, 2012
, “Thermal Behavior and Entropy Generation Rate Analysis of a Viscous Flow in MHD Micropumps
,” J. Mech. Sci. Technol.
, 26
(6
), pp. 1949
–1955
.22.
Habibi Matin
, M.
, Hosseini
, R.
, Simiari
, M.
, and Jahangiri
, P.
, 2013
, “Entropy Generation Minimization of Nanofluid Flow in a MHD Channel Considering Thermal Radiation Effect
,” Mechanics
, 19
(4
), pp. 445
–450
.23.
Mahian
, O.
, Oztop
, H.
, Pop
, I.
, Mahmud
, S.
, and Wongwises
, S.
, 2013
, “Entropy Generation Between Two Vertical Cylinders in the Presence of MHD Flow Subjected to Constant Wall Temperature
,” Int. Commun. Heat Mass Transfer
, 44
, pp. 87
–92
.24.
Rashidi
, M. M.
, Kavyani
, N.
, and Abelman
, S.
, 2014
, “Investigation of Entropy Generation in MHD and Slip Flow Over a Rotating Porous Disk With Variable Properties
,” Int. J. Heat Mass Transfer
, 70
, pp. 892
–917
.25.
Eegunjobi
, A. S.
, and Makinde
, O. D.
, 2013
, “Entropy Generation Analysis in a Variable Viscosity MHD Channel Flow With Permeable Walls and Convective Heating
,” Math. Prob. Eng.
, 2013
, p. 630798
.26.
Das
, S.
, Banu
, A. S.
, Jana
, R. N.
, and Makinde
, O. D.
, 2015
, “Entropy Analysis on MHD Pseudo-Plastic Nanofluid Flow Through a Vertical Porous Channel With Convective Heating
,” Alexandria Eng. J.
, 54
(3
), pp. 325
–337
.27.
Ibanez
, G.
, 2015
, “Entropy Generation in MHD Porous Channel With Hydrodynamic Slip and Convective Boundary Conditions
,” Int. J. Heat Mass Transfer
, 80
, pp. 274
–280
.28.
Lee
, C. C.
, Jones
, O. C.
, and Becker
, M.
, 1993
, “Thermofluid-Neutronic Stability of the Rotating, Fluidized Bed, Space-Power Reactor
,” Nucl. Eng. Des.
, 139
(1
), pp. 17
–30
.29.
Woods
, L. C.
, 1975
, The Thermodynamics of Fluid Systems
, Oxford University Press
, Oxford, UK
.Copyright © 2017 by ASME
You do not currently have access to this content.