The entropy generation due to steady, incompressible micropolar fluid flow in a rectangular duct with slip and convective boundary conditions (CBCs) is calculated. An external uniform magnetic field is applied which is directed arbitrarily in a plane perpendicular to the flow direction. The governing partial differential equations of momentum, angular momentum, and energy are solved numerically using finite-difference method. The obtained velocity, microrotation, and temperature distributions are then used to evaluate the entropy generation and Bejan number. The effects of various parameters on the entropy generation and Bejan number are discussed through graphs.

References

1.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.
2.
Bejan
,
A.
,
1982
, “
Second Law Analysis in Heat Transfer and Thermal Design
,”
Adv. Heat Transfer
,
15
, pp.
1
58
.
3.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
,
New York
.
4.
Baytas
,
A. C.
,
2000
, “
Entropy Generation for Natural Convection in an Inclined Porous Cavity
,”
Int. J. Heat Mass Transfer
,
43
(
12
), pp.
2089
2099
.
5.
Sahin
,
A. Z.
, and
Ben-Mansour
,
R.
,
2003
, “
Entropy Generation in Laminar Fluid Flow Through a Circular Pipe
,”
Entropy
,
5
(
5
), pp.
404
416
.
6.
Heidary
,
H.
,
Pirmohammadi
,
M.
, and
Davoudi
,
M.
,
2012
, “
Control of Free Convection and Entropy Generation in Inclined Porous Media
,”
Heat Transfer Eng.
,
33
(
6
), pp.
565
573
.
7.
Eegunjobi
,
A. S.
, and
Makinde
,
O.
,
2014
, “
Entropy Generation Analysis in Transient Variable Viscosity Couette Flow Between Two Concentric Pipes
,”
J. Therm. Sci. Technol.
,
9
(
2
), p.
JTST0008
.
8.
Narusawa
,
U.
,
2001
, “
The Second-Law Analysis of Mixed Convection in Rectangular Ducts
,”
Heat Mass Transfer
,
37
(
2–3
), pp.
197
203
.
9.
Oztop
,
H. F.
,
2005
, “
Effective Parameters on Second Law Analysis for Semicircular Ducts in Laminar Flow and Constant Wall Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
32
(
1
), pp.
266
274
.
10.
Ko
,
T. H.
, and
Ting
,
K.
,
2006
, “
Entropy Generation and Optimal Analysis for Laminar Forced Convection in Curved Rectangular Ducts: A Numerical Study
,”
Int. J. Therm. Sci.
,
45
(
2
), pp.
138
150
.
11.
Haji-Sheikh
,
A.
,
2006
, “
Fully Developed Heat Transfer to Fluid Flow in Rectangular Passages Filled With Porous Materials
,”
ASME J. Heat Transfer
,
128
(
6
), pp.
550
556
.
12.
Hooman
,
K.
,
Gurgenci
,
H.
, and
Merrikh
,
A. A.
,
2007
, “
Heat Transfer and Entropy Generation Optimization of Forced Convection in Porous-Saturated Ducts of Rectangular Cross-Section
,”
Int. J. Heat Mass Transfer
,
50
(
11
), pp.
2051
2059
.
13.
Jarungthammachote
,
S.
,
2010
, “
Entropy Generation Analysis for Fully Developed Laminar Convection in Hexagonal Duct Subjected to Constant Heat Flux
,”
Energy
,
35
(
12
), pp.
5374
5379
.
14.
Yang
,
G.
,
Wu
,
J. Y.
, and
Yan
,
L.
,
2013
, “
Flow Reversal and Entropy Generation Due to Buoyancy Assisted Mixed Convection in the Entrance Region of a Three Dimensional Vertical Rectangular Duct
,”
Int. J. Heat Mass Transfer
,
67
, pp.
741
751
.
15.
Leong
,
K. Y.
, and
Ong
,
H. C.
,
2014
, “
Entropy Generation Analysis of Nanofluids Flow in Various Shapes of Cross Section Ducts
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
72
78
.
16.
Eringen
,
A. C.
,
1967
, “
The Theory of Micropolar Fluids
,”
J. Math. Mech.
,
16
(1), pp.
1
18
.
17.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2004
, “
Magnetohydrodynamic Free Convection and Entropy Generation in a Square Porous Cavity
,”
Int. J. Heat Mass Transfer
,
47
(
14
), pp.
3245
3256
.
18.
Ibanez
,
G.
, and
Cuevas
,
S.
,
2010
, “
Entropy Generation Minimization of a MHD (Magnetohydrodynamic) Flow in a Microchannel
,”
Energy
,
35
(
10
), pp.
4149
4155
.
19.
Aiboud
,
S.
, and
Saouli
,
S.
,
2010
, “
Entropy Analysis for Viscoelastic Magnetohydrodynamic Flow Over a Stretching Surface
,”
Int. J. Non Linear Mech.
,
45
(
5
), pp.
482
489
.
20.
Bouabid
,
M.
,
Hidouri
,
N.
,
Magherbi
,
M.
, and
Brahim
,
A. B.
,
2011
, “
Analysis of the Magnetic Field Effect on Entropy Generation at Thermosolutal Convection in a Square Cavity
,”
Entropy
,
13
(
5
), pp.
1034
1054
.
21.
Kiyasatfar
,
M.
,
Pourmahmoud
,
N.
,
Golzan
,
M. M.
, and
Mirzaee
,
I.
,
2012
, “
Thermal Behavior and Entropy Generation Rate Analysis of a Viscous Flow in MHD Micropumps
,”
J. Mech. Sci. Technol.
,
26
(
6
), pp.
1949
1955
.
22.
Habibi Matin
,
M.
,
Hosseini
,
R.
,
Simiari
,
M.
, and
Jahangiri
,
P.
,
2013
, “
Entropy Generation Minimization of Nanofluid Flow in a MHD Channel Considering Thermal Radiation Effect
,”
Mechanics
,
19
(
4
), pp.
445
450
.
23.
Mahian
,
O.
,
Oztop
,
H.
,
Pop
,
I.
,
Mahmud
,
S.
, and
Wongwises
,
S.
,
2013
, “
Entropy Generation Between Two Vertical Cylinders in the Presence of MHD Flow Subjected to Constant Wall Temperature
,”
Int. Commun. Heat Mass Transfer
,
44
, pp.
87
92
.
24.
Rashidi
,
M. M.
,
Kavyani
,
N.
, and
Abelman
,
S.
,
2014
, “
Investigation of Entropy Generation in MHD and Slip Flow Over a Rotating Porous Disk With Variable Properties
,”
Int. J. Heat Mass Transfer
,
70
, pp.
892
917
.
25.
Eegunjobi
,
A. S.
, and
Makinde
,
O. D.
,
2013
, “
Entropy Generation Analysis in a Variable Viscosity MHD Channel Flow With Permeable Walls and Convective Heating
,”
Math. Prob. Eng.
,
2013
, p.
630798
.
26.
Das
,
S.
,
Banu
,
A. S.
,
Jana
,
R. N.
, and
Makinde
,
O. D.
,
2015
, “
Entropy Analysis on MHD Pseudo-Plastic Nanofluid Flow Through a Vertical Porous Channel With Convective Heating
,”
Alexandria Eng. J.
,
54
(
3
), pp.
325
337
.
27.
Ibanez
,
G.
,
2015
, “
Entropy Generation in MHD Porous Channel With Hydrodynamic Slip and Convective Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
80
, pp.
274
280
.
28.
Lee
,
C. C.
,
Jones
,
O. C.
, and
Becker
,
M.
,
1993
, “
Thermofluid-Neutronic Stability of the Rotating, Fluidized Bed, Space-Power Reactor
,”
Nucl. Eng. Des.
,
139
(
1
), pp.
17
30
.
29.
Woods
,
L. C.
,
1975
,
The Thermodynamics of Fluid Systems
,
Oxford University Press
,
Oxford, UK
.
You do not currently have access to this content.