Abstract

Engineering innovations—including those in heat and mass transfer—are needed to provide food, water, and power to a growing population (i.e., projected to be 9.8 × 109 by 2050) with limited resources. The interweaving of these resources is embodied in the food, energy, and water (FEW) nexus. This review paper focuses on heat and mass transfer applications which involve at least two aspects of the FEW nexus. Energy and water topics include energy extraction of natural gas hydrates and shale gas; power production (e.g., nuclear and solar); power plant cooling (e.g., wet, dry, and hybrid cooling); water desalination and purification; and building energy/water use, including heating, ventilation, air conditioning, and refrigeration technology. Subsequently, this review considers agricultural thermal fluids applications, such as the food and water nexus (e.g., evapotranspiration and evaporation) and the FEW nexus (e.g., greenhouses and food storage, including granaries and freezing/drying). As part of this review, over 100 review papers on thermal and fluid topics relevant to the FEW nexus were tabulated and over 350 research journal articles were discussed. Each section discusses previous research and highlights future opportunities regarding heat and mass transfer research. Several cross-cutting themes emerged from the literature and represent future directions for thermal fluids research: the need for fundamental, thermal fluids knowledge; scaling up from the laboratory to large-scale, integrated systems; increasing economic viability; and increasing efficiency when utilizing resources, especially using waste products.

References

1.
Perry, W., Broers, A., el-baz, F., Harris, W., Healy, B., Daniel Hillis, W., Juma, C., Kamen, D., Kurzweil, R., Langer, R., Lerner, J., Lohani, B., Lubchenco, J., Page, L., Socolow, R., Venter, J. C., and Ying, J., 2017, “
National Academy of Engineering Grand Challenges for Engineering
,” National Academy of Engineering, Washington, DC, accessed Mar 18, 2019, https://www.nae.edu/File.aspx?id=187214
2.
Kelischek
,
N.
,
2011
, “
Energy Budget of Nitrogen Use in the United States
,”
J. Stud. Res. Environ. Sci. Appalachian
,
1
(
1
), pp.
32
35
.
3.
FAO
,
2011
, “
Global Food Losses and Food Waste
,” FAO, Rome, Italy.
4.
Aquastat
,
F.
,
2011
, “
FAO's Information System on Water and Agriculture
,” Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.
5.
United Nations Department of Economic and Social Affairs,
2017
, “
World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100
,” United Nations Department of Economic and Social Affairs, New York, accessed Mar. 18, 2018, https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
6.
Alexandratos
,
N.
, and
Bruinsma
,
J.
,
2012
, “
World Agriculture Towards 2030/2050: The 2012 Revision
,” FAO, Rome, Italy, ESA Working Paper No.
12
03
.
7.
Muller
,
M.
,
2017
, “
Understanding the Origins of Cape Town's Water Crisis
,”
Civ. Eng. Siviele Ing.
,
2017
(
v25i5
), pp.
11
16
.https://journals.co.za/content/journal/10520/EJC-a549bf214
8.
Steward
,
D. R.
,
Bruss
,
P. J.
,
Yang
,
X.
,
Staggenborg
,
S. A.
,
Welch
,
S. M.
, and
Apley
,
M. D.
,
2013
, “
Tapping Unsustainable Groundwater Stores for Agricultural Production in the High Plains Aquifer of Kansas, Projections to 2110
,”
Proc. Natl. Acad. Sci.
,
110
(
37
), pp.
E3477
E3486
.10.1073/pnas.1220351110
9.
Butler
,
J.
,
Stotler
,
R.
,
Whittemore
,
D.
, and
Reboulet
,
E.
,
2013
, “
Interpretation of Water Level Changes in the High Plains Aquifer in Western Kansas
,”
Groundwater
,
51
(
2
), pp.
180
190
.10.1111/j.1745-6584.2012.00988.x
10.
de Vito
,
R.
,
Portoghese
,
I.
,
Pagano
,
A.
,
Fratino
,
U.
, and
Vurro
,
M.
,
2017
, “
An Index-Based Approach for the Sustainability Assessment of Irrigation Practice Based on the Water-Energy-Food Nexus Framework
,”
Adv. Water Resour.
,
110
, pp.
423
436
.10.1016/j.advwatres.2017.10.027
11.
D'Odorico
,
P.
,
Davis
,
K. F.
,
Rosa
,
L.
,
Carr
,
J. A.
,
Chiarelli
,
D.
,
Dell'Angelo
,
J.
,
Gephart
,
J.
,
MacDonald
,
G. K.
,
Seekell
,
D. A.
,
Suweis
,
S.
, and
Rulli
,
M. C.
,
2018
, “
The Global Food-Energy-Water Nexus
,”
Rev. Geophys.
,
56
(
3
), pp.
456
531
.10.1029/2017RG000591
12.
Finley
,
J. W.
, and
Seiber
,
J. N.
,
2014
, “
The Nexus of Food, Energy, and Water
,”
J. Agric. Food Chem.
,
62
(
27
), pp.
6255
6262
.10.1021/jf501496r
13.
Taylor
,
R. A.
,
Phelan
,
P. E.
,
Otanicar
,
T.
,
Prasher
,
R. S.
, and
Phelan
,
B. E.
,
2012
, “
Socioeconomic Impacts of Heat Transfer Research
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1467
1473
.10.1016/j.icheatmasstransfer.2012.09.007
14.
Thirugnanasambandam
,
M.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2010
, “
A Review of Solar Thermal Technologies
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
312
322
.10.1016/j.rser.2009.07.014
15.
Avila-Marin
,
A. L.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
(
5
), pp.
891
910
.10.1016/j.solener.2011.02.002
16.
Fuqiang
,
W.
,
Ziming
,
C.
,
Jianyu
,
T.
,
Yuan
,
Y.
,
Yong
,
S.
, and
Linhua
,
L.
,
2017
, “
Progress in Concentrated Solar Power Technology With Parabolic Trough Collector System: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
1314
1328
.10.1016/j.rser.2017.05.174
17.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
835
846
.10.1016/j.rser.2013.08.099
18.
Zhang
,
H.
,
Baeyens
,
J.
,
Degrève
,
J.
, and
Cacères
,
G.
,
2013
, “
Concentrated Solar Power Plants: Review and Design Methodology
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
466
481
.10.1016/j.rser.2013.01.032
19.
Zhou
,
X.
,
Wang
,
F.
, and
Ochieng
,
R. M.
,
2010
, “
A Review of Solar Chimney Power Technology
,”
Renewable Sustainable Energy Rev.
,
14
(
8
), pp.
2315
2338
.10.1016/j.rser.2010.04.018
20.
Lamnatou
,
C.
, and
Chemisana
,
D.
,
2017
, “
Photovoltaic/Thermal (PVT) Systems: A Review With Emphasis on Environmental Issues
,”
Renewable Energy
,
105
, pp.
270
287
.10.1016/j.renene.2016.12.009
21.
Habib
,
M. A.
,
Nemitallah
,
M. A.
, and
El-Nakla
,
M.
,
2014
, “
Current Status of CHF Predictions Using CFD Modeling Technique and Review of Other Techniques Especially for Non-Uniform Axial and Circumferential Heating Profiles
,”
Ann. Nucl. Energy
,
70
, pp.
188
207
.10.1016/j.anucene.2014.03.016
22.
Li
,
G.
,
Wang
,
X.
,
Liang
,
B.
,
Li
,
X.
,
Zhang
,
B.
, and
Zou
,
Y.
,
2016
, “
Modeling and Control of Nuclear Reactor Cores for Electricity Generation: A Review of Advanced Technologies
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
116
128
.10.1016/j.rser.2016.01.116
23.
Rahman
,
M. M.
,
Dongxu
,
J.
,
Beni
,
M. S.
,
Hei
,
H. C.
,
He
,
W.
, and
Zhao
,
J.
,
2016
, “
Supercritical Water Heat Transfer for Nuclear Reactor Applications: A Review
,”
Ann. Nucl. Energy
,
97
, pp.
53
65
.10.1016/j.anucene.2016.06.022
24.
Oka
,
Y.
,
2002
, “
Review of High Temperature Water and Steam Cooled Reactor Concepts
,” International Congress on Advances in Nuclear Power Plants, Hollywood, FL, June 9–13, American Nuclear Society, La Grange Park.
25.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.10.1016/j.net.2015.06.009
26.
No
,
H. C.
,
Kim
,
J. H.
, and
Kim
,
H. M.
,
2007
, “
A Review of Helium Gas Turbine Technology for High-Temperature Gas-Cooled Reactors
,”
Nucl. Eng. Technol.
,
39
(
1
), pp.
21
30
.10.5516/NET.2007.39.1.021
27.
Abu-Khader
,
M. M.
,
2009
, “
Recent Advances in Nuclear Power: A Review
,”
Prog. Nucl. Energy
,
51
(
2
), pp.
225
235
.10.1016/j.pnucene.2008.05.001
28.
Lenzen
,
M.
,
2008
, “
Life Cycle Energy and Greenhouse Gas Emissions of Nuclear Energy: A Review
,”
Energy Convers. Manage.
,
49
(
8
), pp.
2178
2199
.10.1016/j.enconman.2008.01.033
29.
Abram
,
T.
, and
Ion
,
S.
,
2008
, “
Generation-IV Nuclear Power: A Review of the State of the Science
,”
Energy Policy
,
36
(
12
), pp.
4323
4330
.10.1016/j.enpol.2008.09.059
30.
Badr
,
L.
,
Boardman
,
G.
, and
Bigger
,
J.
,
2012
, “
Review of Water Use in U.S. Thermoelectric Power Plants
,”
J. Energy Eng.
,
138
(
4
), pp.
246
257
.10.1061/(ASCE)EY.1943-7897.0000076
31.
Meldrum
,
J.
,
Nettles-Anderson
,
S.
,
Heath
,
G.
, and
Macknick
,
J.
,
2013
, “
Life Cycle Water Use for Electricity Generation: A Review and Harmonization of Literature Estimates
,”
Environ. Res. Lett.
,
8
(
1
), p.
015031
.10.1088/1748-9326/8/1/015031
32.
Macknick
,
J.
,
Newmark
,
R.
,
Heath
,
G.
, and
Hallett
,
K. C.
,
2012
, “
Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies: A Review of Existing Literature
,”
Environ. Res. Lett.
,
7
(
4
), p.
045802
.10.1088/1748-9326/7/4/045802
33.
Sun
,
Y.
,
Guan
,
Z.
, and
Hooman
,
K.
,
2017
, “
A Review on the Performance Evaluation of Natural Draft Dry Cooling Towers and Possible Improvements Via Inlet Air Spray Cooling
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
618
637
.10.1016/j.rser.2017.05.151
34.
He
,
S.
,
Gurgenci
,
H.
,
Guan
,
Z.
,
Huang
,
X.
, and
Lucas
,
M.
,
2015
, “
A Review of Wetted Media With Potential Application in the Pre-Cooling of Natural Draft Dry Cooling Towers
,”
Renewable Sustainable Energy Rev.
,
44
, pp.
407
422
.10.1016/j.rser.2014.12.037
35.
Ibrahim
,
T. K.
,
Rahman
,
M.
, and
Abdalla
,
A. N.
,
2011
, “
Improvement of Gas Turbine Performance Based on Inlet Air Cooling Systems: A Technical Review
,”
Int. J. Phys. Sci.
,
6
(
4
), pp.
620
627
.10.5897/IJPS10.563
36.
Al-Ibrahim
,
A. M.
, and
Varnham
,
A.
,
2010
, “
A Review of Inlet Air-Cooling Technologies for Enhancing the Performance of Combustion Turbines in Saudi Arabia
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
1879
1888
.10.1016/j.applthermaleng.2010.04.025
37.
Mukkamala
,
Y.
,
2017
, “
Contemporary Trends in Thermo-Hydraulic Testing and Modeling of Automotive Radiators Deploying Nano-Coolants and Aerodynamically Efficient Air-Side Fins
,”
Renewable Sustainable Energy Rev.
,
76
, pp.
1208
1229
.10.1016/j.rser.2017.03.106
38.
Bhuiyan
,
A. A.
, and
Islam
,
A. S.
,
2016
, “
Thermal and Hydraulic Performance of Finned-Tube Heat Exchangers Under Different Flow Ranges: A Review on Modeling and Experiment
,”
Int. J. Heat Mass Transfer
,
101
, pp.
38
59
.10.1016/j.ijheatmasstransfer.2016.05.022
39.
Sharshir
,
S. W.
,
Ellakany
,
Y. M.
,
Algazzar
,
A. M.
,
Elsheikh
,
A. H.
,
Elkadeem
,
M.
,
Edreis
,
E. M.
,
Waly
,
A. S.
,
Sathyamurthy
,
R.
,
Panchal
,
H.
, and
Elashry
,
M. S.
,
2019
, “
A Mini Review of Techniques Used to Improve the Tubular Solar Still Performance for Solar Water Desalination
,”
Process Saf. Environ. Prot.
,
124
, pp.
204
212
.10.1016/j.psep.2019.02.020
40.
Selvaraj
,
K.
, and
Natarajan
,
A.
,
2018
, “
Factors Influencing the Performance and Productivity of Solar Stills—A Review
,”
Desalination
,
435
, pp.
181
187
.10.1016/j.desal.2017.09.031
41.
Chandrashekara
,
M.
, and
Yadav
,
A.
,
2017
, “
Water Desalination System Using Solar Heat: A Review
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
1308
1330
.10.1016/j.rser.2016.08.058
42.
Kabeel
,
A.
, and
El-Agouz
,
S.
,
2011
, “
Review of Researches and Developments on Solar Stills
,”
Desalination
,
276
(
1–3
), pp.
1
12
.10.1016/j.desal.2011.03.042
43.
Kaushal
,
A.
,
2010
, “
Solar Stills: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
446
453
.10.1016/j.rser.2009.05.011
44.
Teow
,
Y. H.
, and
Mohammad
,
A. W.
,
2019
, “
New Generation Nanomaterials for Water Desalination: A Review
,”
Desalination
,
451
, pp.
2
17
.10.1016/j.desal.2017.11.041
45.
Gao
,
W.
,
Liang
,
H.
,
Ma
,
J.
,
Han
,
M.
,
Chen
,
Z-L.
,
Han
,
Z-S.
, and
Li
,
G-B.
,
2011
, “
Membrane Fouling Control in Ultrafiltration Technology for Drinking Water Production: A Review
,”
Desalination
,
272
(
1–3
), pp.
1
8
.10.1016/j.desal.2011.01.051
46.
Mahmoud
,
K. A.
,
Mansoor
,
B.
,
Mansour
,
A.
, and
Khraisheh
,
M.
,
2015
, “
Functional Graphene Nanosheets: The Next Generation Membranes for Water Desalination
,”
Desalination
,
356
, pp.
208
225
.10.1016/j.desal.2014.10.022
47.
Charcosset
,
C.
,
2009
, “
A Review of Membrane Processes and Renewable Energies for Desalination
,”
Desalination
,
245
(
1–3
), pp.
214
231
.10.1016/j.desal.2008.06.020
48.
Mbarga
,
A. A.
,
Song
,
L.
,
Williams
,
W. R.
, and
Rainwater
,
K.
,
2014
, “
Integration of Renewable Energy Technologies With Desalination
,”
Curr. Sustainable/Renewable Energy Rep.
,
1
(
1
), pp.
11
18
.10.1007/s40518-013-0002-1
49.
Al-Amshawee
,
S.
,
Yunus
,
M. Y. B. M.
,
Azoddein
,
A. A. M.
,
Hassell
,
D. G.
,
Dakhil
,
I. H.
, and
Hasan
,
H. A.
,
2020
, “
Electrodialysis Desalination for Water and Wastewater: A Review
,”
Chem. Eng. J.
,
380
, p.
122231
.10.1016/j.cej.2019.122231
50.
Campione
,
A.
,
Gurreri
,
L.
,
Ciofalo
,
M.
,
Micale
,
G.
,
Tamburini
,
A.
, and
Cipollina
,
A.
,
2018
, “
Electrodialysis for Water Desalination: A Critical Assessment of Recent Developments on Process Fundamentals, Models and Applications
,”
Desalination
,
434
, pp.
121
160
.10.1016/j.desal.2017.12.044
51.
Qasim
,
M.
,
Badrelzaman
,
M.
,
Darwish
,
N. N.
,
Darwish
,
N. A.
, and
Hilal
,
N.
,
2019
, “
Reverse Osmosis Desalination: A State-of-the-Art Review
,”
Desalination
,
459
, pp.
59
104
.10.1016/j.desal.2019.02.008
52.
Li
,
D.
,
Yan
,
Y.
, and
Wang
,
H.
,
2016
, “
Recent Advances in Polymer and Polymer Composite Membranes for Reverse and Forward Osmosis Processes
,”
Prog. Polym. Sci.
,
61
, pp.
104
155
.10.1016/j.progpolymsci.2016.03.003
53.
Qasim
,
M.
,
Darwish
,
N. A.
,
Sarp
,
S.
, and
Hilal
,
N.
,
2015
, “
Water Desalination by Forward (Direct) Osmosis Phenomenon: A Comprehensive Review
,”
Desalination
,
374
, pp.
47
69
.10.1016/j.desal.2015.07.016
54.
Jamaly
,
S.
,
Darwish
,
N.
,
Ahmed
,
I.
, and
Hasan
,
S.
,
2014
, “
A Short Review on Reverse Osmosis Pretreatment Technologies
,”
Desalination
,
354
, pp.
30
38
.10.1016/j.desal.2014.09.017
55.
Alghoul
,
M.
,
Poovanaesvaran
,
P.
,
Sopian
,
K.
, and
Sulaiman
,
M.
,
2009
, “
Review of Brackish Water Reverse Osmosis (BWRO) System Designs
,”
Renewable Sustainable Energy Rev.
,
13
(
9
), pp.
2661
2667
.10.1016/j.rser.2009.03.013
56.
Srithar
,
K.
, and
Rajaseenivasan
,
T.
,
2018
, “
Recent Fresh Water Augmentation Techniques in Solar Still and HDH Desalination—A Review
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
629
644
.10.1016/j.rser.2017.09.056
57.
Narayan
,
G. P.
,
Sharqawy
,
M. H.
,
Summers
,
E. K.
,
Lienhard
,
J. H.
,
Zubair
,
S. M.
, and
Antar
,
M. A.
,
2010
, “
The Potential of Solar-Driven Humidification–Dehumidification Desalination for Small-Scale Decentralized Water Production
,”
Renewable Sustainable Energy Rev.
,
14
(
4
), pp.
1187
1201
.10.1016/j.rser.2009.11.014
58.
Kadhom
,
M.
, and
Deng
,
B.
,
2018
, “
Metal-Organic Frameworks (MOFs) in Water Filtration Membranes for Desalination and Other Applications
,”
Appl. Mater. Today
,
11
, pp.
219
230
.10.1016/j.apmt.2018.02.008
59.
Sadhishkumar
,
S.
, and
Balusamy
,
T.
,
2014
, “
Performance Improvement in Solar Water Heating Systems—A Review
,”
Renewable Sustainable Energy Rev.
,
37
, pp.
191
198
.10.1016/j.rser.2014.04.072
60.
Ibrahim
,
O.
,
Fardoun
,
F.
,
Younes
,
R.
, and
Louahlia-Gualous
,
H.
,
2014
, “
Review of Water-Heating Systems: General Selection Approach Based on Energy and Environmental Aspects
,”
Build. Environ.
,
72
, pp.
259
286
.10.1016/j.buildenv.2013.09.006
61.
Buker
,
M. S.
, and
Riffat
,
S. B.
,
2016
, “
Solar Assisted Heat Pump Systems for Low Temperature Water Heating Applications: A Systematic Review
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
399
413
.10.1016/j.rser.2015.10.157
62.
Shukla
,
R.
,
Sumathy
,
K.
,
Erickson
,
P.
, and
Gong
,
J.
,
2013
, “
Recent Advances in the Solar Water Heating Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
19
, pp.
173
190
.10.1016/j.rser.2012.10.048
63.
Hollands
,
K.
, and
Lightstone
,
M.
,
1989
, “
A Review of Low-Flow, Stratified-Tank Solar Water Heating Systems
,”
Sol. Energy
,
43
(
2
), pp.
97
105
.10.1016/0038-092X(89)90151-5
64.
Hepbasli
,
A.
, and
Kalinci
,
Y.
,
2009
, “
A Review of Heat Pump Water Heating Systems
,”
Renewable Sustainable Energy Rev.
,
13
(
6–7
), pp.
1211
1229
.10.1016/j.rser.2008.08.002
65.
Jaisankar
,
S.
,
Ananth
,
J.
,
Thulasi
,
S.
,
Jayasuthakar
,
S.
, and
Sheeba
,
K.
,
2011
, “
A Comprehensive Review on Solar Water Heaters
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
3045
3050
.10.1016/j.rser.2011.03.009
66.
Shukla
,
A.
,
Buddhi
,
D.
, and
Sawhney
,
R.
,
2009
, “
Solar Water Heaters With Phase Change Material Thermal Energy Storage Medium: A Review
,”
Renewable Sustainable Energy Rev.
,
13
(
8
), pp.
2119
2125
.10.1016/j.rser.2009.01.024
67.
Serag-Eldin
,
M.
,
2013
, “
Design of a Chilled-Water Storage Unit for Solar Air-Conditioning
,”
Int. J. Sustainable Energy
,
32
(
5
), pp.
385
405
.10.1080/14786451.2013.774399
68.
Wang
,
Y.
,
Shukla
,
A.
, and
Liu
,
S.
,
2017
, “
A State of Art Review on Methodologies for Heat Transfer and Energy Flow Characteristics of the Active Building Envelopes
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
1102
1116
.10.1016/j.rser.2017.05.015
69.
Peeters
,
L.
,
Beausoleil-Morrison
,
I.
, and
Novoselac
,
A.
,
2011
, “
Internal Convective Heat Transfer Modeling: Critical Review and Discussion of Experimentally Derived Correlations
,”
Energy Build.
,
43
(
9
), pp.
2227
2239
.10.1016/j.enbuild.2011.05.002
70.
Sarbu
,
I.
, and
Sebarchievici
,
C.
,
2014
, “
General Review of Ground-Source Heat Pump Systems for Heating and Cooling of Buildings
,”
Energy Build.
,
70
, pp.
441
454
.10.1016/j.enbuild.2013.11.068
71.
Xu
,
X.
,
Wang
,
S.
,
Wang
,
J.
, and
Xiao
,
F.
,
2010
, “
Active Pipe-Embedded Structures in Buildings for Utilizing Low-Grade Energy Sources: A Review
,”
Energy Build.
,
42
(
10
), pp.
1567
1581
.10.1016/j.enbuild.2010.05.002
72.
Wang
,
Y.
,
Kuckelkorn
,
J.
,
Zhao
,
F.-Y.
,
Spliethoff
,
H.
, and
Lang
,
W.
,
2017
, “
A State of Art of Review on Interactions Between Energy Performance and Indoor Environment Quality in Passive House Buildings
,”
Renewable Sustainable Energy Rev.
,
72
, pp.
1303
1319
.10.1016/j.rser.2016.10.039
73.
Buker
,
M. S.
, and
Riffat
,
S. B.
,
2015
, “
Building Integrated Solar Thermal Collectors—A Review
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
327
346
.10.1016/j.rser.2015.06.009
74.
Chemisana
,
D.
,
2011
, “
Building Integrated Concentrating Photovoltaics: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
603
611
.10.1016/j.rser.2010.07.017
75.
Ralegaonkar
,
R. V.
, and
Gupta
,
R.
,
2010
, “
Review of Intelligent Building Construction: A Passive Solar Architecture Approach
,”
Renewable Sustainable Energy Rev.
,
14
(
8
), pp.
2238
2242
.10.1016/j.rser.2010.04.016
76.
Akeiber
,
H.
,
Nejat
,
P.
,
Majid
,
M. Z. A.
,
Wahid
,
M. A.
,
Jomehzadeh
,
F.
,
Famileh
,
I. Z.
,
Calautit
,
J. K.
,
Hughes
,
B. R.
, and
Zaki
,
S. A.
,
2016
, “
A Review on Phase Change Material (PCM) for Sustainable Passive Cooling in Building Envelopes
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1470
1497
.10.1016/j.rser.2016.03.036
77.
Kuznik
,
F.
,
David
,
D.
,
Johannes
,
K.
, and
Roux
,
J.-J.
,
2011
, “
A Review on Phase Change Materials Integrated in Building Walls
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
379
391
.10.1016/j.rser.2010.08.019
78.
Iten
,
M.
,
Liu
,
S.
, and
Shukla
,
A.
,
2016
, “
A Review on the Air-PCM-TES Application for Free Cooling and Heating in the Buildings
,”
Renewable Sustainable Energy Rev.
,
61
, pp.
175
186
.10.1016/j.rser.2016.03.007
79.
Kamali
,
S.
,
2014
, “
Review of Free Cooling System Using Phase Change Material for Building
,”
Energy Build.
,
80
, pp.
131
136
.10.1016/j.enbuild.2014.05.021
80.
Osterman
,
E.
,
Tyagi
,
V.
,
Butala
,
V.
,
Rahim
,
N. A.
, and
Stritih
,
U.
,
2012
, “
Review of PCM Based Cooling Technologies for Buildings
,”
Energy Build.
,
49
, pp.
37
49
.10.1016/j.enbuild.2012.03.022
81.
Raj
,
V. A. A.
, and
Velraj
,
R.
,
2010
, “
Review on Free Cooling of Buildings Using Phase Change Materials
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2819
2829
.10.1016/j.rser.2010.07.004
82.
Thambidurai
,
M.
,
Panchabikesan
,
K.
,
N
,
K. M.
, and
Ramalingam
,
V.
,
2015
, “
Review on Phase Change Material Based Free Cooling of Buildings—The Way Toward Sustainability
,”
J. Energy Storage
,
4
, pp.
74
88
.10.1016/j.est.2015.09.003
83.
Waqas
,
A.
, and
Din
,
Z. U.
,
2013
, “
Phase Change Material (PCM) Storage for Free Cooling of Buildings—A Review
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
607
625
.10.1016/j.rser.2012.10.034
84.
Al-Abidi
,
A. A.
,
Mat
,
S. B.
,
Sopian
,
K.
,
Sulaiman
,
M.
,
Lim
,
C. H.
, and
Th
,
A.
,
2012
, “
Review of Thermal Energy Storage for Air Conditioning Systems
,”
Renewable Sustainable Energy Rev.
,
16
(
8
), pp.
5802
5819
.10.1016/j.rser.2012.05.030
85.
Du
,
K.
,
Calautit
,
J.
,
Wang
,
Z.
,
Wu
,
Y.
, and
Liu
,
H.
,
2018
, “
A Review of the Applications of Phase Change Materials in Cooling, Heating and Power Generation in Different Temperature Ranges
,”
Appl. Energy
,
220
, pp.
242
273
.10.1016/j.apenergy.2018.03.005
86.
Hasnain
,
S.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies—Part II: Cool Thermal Storage
,”
Energy Convers. Manage.
,
39
(
11
), pp.
1139
1153
.10.1016/S0196-8904(98)00024-7
87.
Lin
,
Y.
,
Alva
,
G.
, and
Fang
,
G.
,
2018
, “
Review on Thermal Performances and Applications of Thermal Energy Storage Systems With Inorganic Phase Change Materials
,”
Energy
,
165
, pp.
685
708
.10.1016/j.energy.2018.09.128
88.
Regin
,
A. F.
,
Solanki
,
S.
, and
Saini
,
J.
,
2008
, “
Heat Transfer Characteristics of Thermal Energy Storage System Using PCM Capsules: A Review
,”
Renewable Sustainable Energy Rev.
,
12
(
9
), pp.
2438
2458
.10.1016/j.rser.2007.06.009
89.
Shao
,
J.
,
Darkwa
,
J.
, and
Kokogiannakis
,
G.
,
2015
, “
Review of Phase Change Emulsions (PCMEs) and Their Applications in HVAC Systems
,”
Energy Build.
,
94
, pp.
200
217
.10.1016/j.enbuild.2015.03.003
90.
Ziegler
,
F.
, and
Riesch
,
P.
,
1993
, “
Absorption Cycles. A Review With Regard to Energetic Efficiency
,”
Heat Recovery Syst. CHP
,
13
(
2
), pp.
147
159
.10.1016/0890-4332(93)90034-S
91.
Sur
,
A.
, and
Das
,
R. K.
,
2016
, “
Review of Technology Used to Improve Heat and Mass Transfer Characteristics of Adsorption Refrigeration System
,”
Int. J. Air-Cond. Refrig.
,
24
(
02
), p.
1630003
.10.1142/S2010132516300032
92.
Daou
,
K.
,
Wang
,
R.
, and
Xia
,
Z.
,
2006
, “
Desiccant Cooling Air Conditioning: A Review
,”
Renewable Sustainable Energy Rev.
,
10
(
2
), pp.
55
77
.10.1016/j.rser.2004.09.010
93.
Vivekh
,
P.
,
Kumja
,
M.
,
Bui
,
D.
, and
Chua
,
K.
,
2018
, “
Recent Developments in Solid Desiccant Coated Heat Exchangers—A Review
,”
Appl. Energy
,
229
, pp.
778
803
.10.1016/j.apenergy.2018.08.041
94.
Costelloe
,
B.
, and
Finn
,
D.
,
2003
, “
Indirect Evaporative Cooling Potential in Air–Water Systems in Temperate Climates
,”
Energy Build.
,
35
(
6
), pp.
573
591
.10.1016/S0378-7788(02)00161-5
95.
Jeong
,
S.
,
2014
, “
AMR (Active Magnetic Regenerative) Refrigeration for Low Temperature
,”
Cryogenics
,
62
, pp.
193
201
.10.1016/j.cryogenics.2014.03.015
96.
Mezaal
,
N.
,
Osintsev
,
K.
, and
Zhirgalova
,
T.
,
2017
, “
Review of Magnetic Refrigeration System as Alternative to Conventional Refrigeration System
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
87
(
3
), p.
032024
.10.1088/1755-1315/87/3/032024
97.
Nielsen
,
K. K.
,
Tusek
,
J.
,
Engelbrecht
,
K.
,
Schopfer
,
S.
,
Kitanovski
,
A.
,
Bahl
,
C. R. H.
,
Smith
,
A.
,
Pryds
,
N.
, and
Poredos
,
A.
,
2011
, “
Review on Numerical Modeling of Active Magnetic Regenerators for Room Temperature Applications
,”
Int. J. Refrig.
,
34
(
3
), pp.
603
616
.10.1016/j.ijrefrig.2010.12.026
98.
Zhen-Xing
,
L.
,
Ke
,
L.
,
Jun
,
S.
,
Wei
,
D.
,
Xin-Qiang
,
G.
,
Xiao-Hui
,
G.
, and
Mao-Qiong
,
G.
,
2017
, “
Progress of Room Temperature Magnetic Refrigeration Technology
,”
Acta Phys. Sin.
,
66
(
11
), p.
110701
.
99.
Chatti
,
I.
,
Delahaye
,
A.
,
Fournaison
,
L.
, and
Petitet
,
J.-P.
,
2005
, “
Benefits and Drawbacks of Clathrate Hydrates: A Review of Their Areas of Interest
,”
Energy Convers. Manage.
,
46
(
9–10
), pp.
1333
1343
.10.1016/j.enconman.2004.06.032
100.
Chong
,
Z. R.
,
Yang
,
S. H. B.
,
Babu
,
P.
,
Linga
,
P.
, and
Li
,
X.-S.
,
2016
, “
Review of Natural Gas Hydrates as an Energy Resource: Prospects and Challenges
,”
Appl. Energy
,
162
, pp.
1633
1652
.10.1016/j.apenergy.2014.12.061
101.
Kondori
,
J.
,
Zendehboudi
,
S.
, and
Hossain
,
M. E.
,
2017
, “
A Review on Simulation of Methane Production From Gas Hydrate Reservoirs: Molecular Dynamics Prospective
,”
J. Pet. Sci. Eng.
,
159
, pp.
754
772
.10.1016/j.petrol.2017.09.073
102.
Lee
,
J. Y.
,
Ryu
,
B. J.
,
Yun
,
T. S.
,
Lee
,
J.
, and
Cho
,
G.-C.
,
2011
, “
Review on the Gas Hydrate Development and Production as a New Energy Resource
,”
KSCE J. Civil Eng.
,
15
(
4
), pp.
689
696
.10.1007/s12205-011-0009-3
103.
Li
,
X.-S.
,
Xu
,
C.-G.
,
Zhang
,
Y.
,
Ruan
,
X.-K.
,
Li
,
G.
, and
Wang
,
Y.
,
2016
, “
Investigation Into Gas Production From Natural Gas Hydrate: A Review
,”
Appl. Energy
,
172
, pp.
286
322
.10.1016/j.apenergy.2016.03.101
104.
Sun
,
Y.
,
,
X.
, and
Guo
,
W.
,
2014
, “
A Review on Simulation Models for Exploration and Exploitation of Natural Gas Hydrate
,”
Arabian J. Geosci.
,
7
(
6
), pp.
2199
2214
.10.1007/s12517-014-1294-1
105.
Yin
,
Z.
,
Chong
,
Z. R.
,
Tan
,
H. K.
, and
Linga
,
P.
,
2016
, “
Review of Gas Hydrate Dissociation Kinetic Models for Energy Recovery
,”
J. Nat. Gas Sci. Eng.
,
35
, pp.
1362
1387
.10.1016/j.jngse.2016.04.050
106.
Sayed
,
M. A.
,
Al-Muntasheri
,
G. A.
, and
Liang
,
F.
,
2017
, “
Development of Shale Reservoirs: Knowledge Gained From Developments in North America
,”
J. Pet. Sci. Eng.
,
157
, pp.
164
186
.10.1016/j.petrol.2017.07.014
107.
Costa
,
D.
,
Jesus
,
J.
,
Branco
,
D.
,
Danko
,
A.
, and
Fiúza
,
A.
,
2017
, “
Extensive Review of Shale Gas Environmental Impacts From Scientific Literature (2010–2015)
,”
Environ. Sci. Pollut. Res.
,
24
(
17
), pp.
14579
14594
.10.1007/s11356-017-8970-0
108.
Gensterblum
,
Y.
,
Ghanizadeh
,
A.
,
Cuss
,
R. J.
,
Amann-Hildenbrand
,
A.
,
Krooss
,
B. M.
,
Clarkson
,
C. R.
,
Harrington
,
J. F.
, and
Zoback
,
M. D.
,
2015
, “
Gas Transport and Storage Capacity in Shale Gas Reservoirs—A Review. Part A: Transport Processes
,”
J. Unconv. Oil Gas Resour.
,
12
, pp.
87
122
.10.1016/j.juogr.2015.08.001
109.
Salama
,
A.
,
Amin
,
M. F. E.
,
Kumar
,
K.
, and
Sun
,
S.
,
2017
, “
Flow and Transport in Tight and Shale Formations: A Review
,”
Geofluids
,
2017
, pp.
1
21
.10.1155/2017/4251209
110.
Oke
,
D.
,
Majozi
,
T.
,
Mukherjee
,
R.
,
Sengupta
,
D.
, and
El-Halwagi
,
M.
,
2018
, “
Simultaneous Energy and Water Optimisation in Shale Exploration
,”
Processes
,
6
(
7
), p.
86
.10.3390/pr6070086
111.
Sun
,
Y.
,
Wang
,
D.
,
Tsang
,
D. C.
,
Wang
,
L.
,
Ok
,
Y. S.
, and
Feng
,
Y.
,
2019
, “
A Critical Review of Risks, Characteristics, and Treatment Strategies for Potentially Toxic Elements in Wastewater From Shale Gas Extraction
,”
Environ. Int.
,
125
, pp.
452
469
.10.1016/j.envint.2019.02.019
112.
Mao
,
J.
,
Zhang
,
C.
,
Yang
,
X.
, and
Zhang
,
Z.
,
2018
, “
Investigation on Problems of Wastewater From Hydraulic Fracturing and Their Solutions
,”
Water, Air, Soil Pollut.
,
229
(
8
), p.
246
.10.1007/s11270-018-3847-5
113.
Gregory
,
K. B.
,
Vidic
,
R. D.
, and
Dzombak
,
D. A.
,
2011
, “
Water Management Challenges Associated With the Production of Shale Gas by Hydraulic Fracturing
,”
Elements
,
7
(
3
), pp.
181
186
.10.2113/gselements.7.3.181
114.
Cho
,
H.
,
Jang
,
Y.
,
Koo
,
J.
,
Choi
,
Y.
,
Lee
,
S.
, and
Sohn
,
J.
,
2016
, “
Effect of Pretreatment on Fouling Propensity of Shale Gas Wastewater in Membrane Distillation Process
,”
Desalin. Water Treat.
,
57
(
51
), pp.
24566
24573
.10.1080/19443994.2016.1152640
115.
Kim
,
J.
,
Kim
,
J.
, and
Hong
,
S.
,
2018
, “
Recovery of Water and Minerals From Shale Gas Produced Water by Membrane Distillation Crystallization
,”
Water Res.
,
129
, pp.
447
459
.10.1016/j.watres.2017.11.017
116.
Chang
,
H.
,
Li
,
T.
,
Liu
,
B.
,
Vidic
,
R. D.
,
Elimelech
,
M.
, and
Crittenden
,
J. C.
,
2019
, “
Potential and Implemented Membrane-Based Technologies for the Treatment and Reuse of Flowback and Produced Water From Shale Gas and Oil Plays: A Review
,”
Desalination
,
455
, pp.
34
57
.10.1016/j.desal.2019.01.001
117.
Shaffer
,
D. L.
,
Arias Chavez
,
L. H.
,
Ben-Sasson
,
M.
,
Romero-Vargas Castrillón
,
S.
,
Yip
,
N. Y.
, and
Elimelech
,
M.
,
2013
, “
Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers, Technologies, and Future Directions
,”
Environ. Sci. Technol.
,
47
(
17
), pp.
9569
9583
.10.1021/es401966e
118.
Adham
,
S.
,
Hussain
,
A.
,
Minier-Matar
,
J.
,
Janson
,
A.
, and
Sharma
,
R.
,
2018
, “
Membrane Applications and Opportunities for Water Management in the Oil & Gas Industry
,”
Desalination
,
440
, pp.
2
17
.10.1016/j.desal.2018.01.030
119.
Garofalo
,
P.
,
Ventrella
,
D.
,
Kersebaum
,
K. C.
,
Gobin
,
A.
,
Trnka
,
M.
,
Giglio
,
L.
,
Dubrovský
,
M.
, and
Castellini
,
M.
,
2019
, “
Water Footprint of Winter Wheat Under Climate Change: Trends and Uncertainties Associated to the Ensemble of Crop Models
,”
Sci. Total Environ.
,
658
, pp.
1186
1208
.10.1016/j.scitotenv.2018.12.279
120.
Yang
,
Y. C. E.
,
Ringler
,
C.
,
Brown
,
C.
, and
Mondal
,
M. A. H.
,
2016
, “
Modeling the Agricultural Water-Energy-Food Nexus in the Indus River Basin, Pakistan
,”
J. Water Resour. Plann. Manage.
,
142
(
12
), p.
04016062
.10.1061/(ASCE)WR.1943-5452.0000710
121.
Green
,
S. R.
,
Kirkham
,
M. B.
, and
Clothier
,
B. E.
,
2006
, “
Root Uptake and Transpiration: From Measurements and Models to Sustainable Irrigation
,”
Agric. Water Manage.
,
86
(
1–2
), pp.
165
176
.10.1016/j.agwat.2006.06.008
122.
Zeng
,
R.
,
Cai
,
X.
,
Ringler
,
C.
, and
Zhu
,
T.
,
2017
, “
Hydropower Versus Irrigation—An Analysis of Global Patterns
,”
Environ. Res. Lett.
,
12
(
3
), p.
034006
.10.1088/1748-9326/aa5f3f
123.
Sharda
,
V.
,
Gowda
,
P. H.
,
Marek
,
G.
,
Kisekka
,
I.
,
Ray
,
C.
, and
Adhikari
,
P.
,
2019
, “
Simulating the Impacts of Irrigation Levels on Soybean Production in Texas High Plains to Manage Diminishing Groundwater Levels
,”
J. Am. Water Resour. Assoc.
,
55
(
1
), pp.
56
69
.10.1111/1752-1688.12720
124.
Roth
,
G.
,
Harris
,
G.
,
Gillies
,
M.
,
Montgomery
,
J.
, and
Wigginton
,
D.
,
2013
, “
Water-Use Efficiency and Productivity Trends in Australian Irrigated Cotton: A Review
,”
Crop Pasture Sci.
,
64
(
12
), pp.
1033
1048
.10.1071/CP13315
125.
Chandel
,
S.
,
Naik
,
M. N.
, and
Chandel
,
R.
,
2015
, “
Review of Solar Photovoltaic Water Pumping System Technology for Irrigation and Community Drinking Water Supplies
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
1084
1099
.10.1016/j.rser.2015.04.083
126.
Kelley
,
L. C.
,
Gilbertson
,
E.
,
Sheikh
,
A.
,
Eppinger
,
S. D.
, and
Dubowsky
,
S.
,
2010
, “
On the Feasibility of Solar-Powered Irrigation
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2669
2682
.10.1016/j.rser.2010.07.061
127.
Katul
,
G. G.
,
Oren
,
R.
,
Manzoni
,
S.
,
Higgins
,
C.
, and
Parlange
,
M. B.
,
2012
, “
Evapotranspiration: A Process Driving Mass Transport and Energy Exchange in the Soil-Plant-Atmosphere-Climate System
,”
Rev. Geophys.
,
50
(
3
), pp. 1–25.10.1029/2011RG000366
128.
Fisher
,
J. B.
,
Melton
,
F.
,
Middleton
,
E.
,
Hain
,
C.
,
Anderson
,
M.
,
Allen
,
R.
,
McCabe
,
M. F.
,
Hook
,
S.
,
Baldocchi
,
D.
,
Townsend
,
P. A.
,
Kilic
,
A.
,
Tu
,
K.
,
Miralles
,
D. D.
,
Perret
,
J.
,
Lagouarde
,
J.-P.
,
Waliser
,
D.
,
Purdy
,
A. J.
,
French
,
A.
,
Schimel
,
D.
,
Famiglietti
,
J. S.
,
Stephens
,
G.
, and
Wood
,
E. F.
,
2017
, “
The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources
,”
Water Resour. Res.
,
53
(
4
), pp.
2618
2626
.10.1002/2016WR020175
129.
Walter
,
I. A.
,
Allen
,
R. G.
,
Elliott
,
R.
,
Jensen
,
M.
,
Itenfisu
,
D.
,
Mecham
,
B.
,
Howell
,
T.
,
Snyder
,
R.
,
Brown
,
P.
, and
Echings
,
S.
,
2000
, “
ASCE's Standardized Reference Evapotranspiration Equation
,” Watershed Management and Operations Management, Ft. Collins, CO, June 20–24, pp.
1
11
.
130.
Hanson
,
R. L.
,
1991
, “
Evapotranspiration and Droughts
,” U.S. Geological Survey, Denver, CO, U.S. Geological Survey Water-Supply Paper No. 2375, pp.
99
104
.
131.
Chahine
,
M. T.
,
1992
, “
The Hydrological Cycle and Its Influence on Climate
,”
Nature
,
359
(
6394
), pp.
373
380
.10.1038/359373a0
132.
Priestley
,
C. H. B.
, and
Taylor
,
R.
,
1972
, “
On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters
,”
Mon. Weather Rev.
,
100
(
2
), pp.
81
92
.10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
133.
Granger
,
R. J.
, and
Gray
,
D. M.
,
1989
, “
Evaporation From Natural Nonsaturated Surfaces
,”
J. Hydrol.
,
111
(
1–4
), pp.
21
29
.10.1016/0022-1694(89)90249-7
134.
Hargreaves
,
G. H.
, and
Samani
,
Z. A.
,
1985
, “
Reference Crop Evapotranspiration From Temperature
,”
Appl. Eng. Agric.,
1
(
2
), pp.
96
99
.10.13031/2013.26773
135.
Boulet
,
G.
,
Delogu
,
E.
,
Saadi
,
S.
,
Chebbi
,
W.
,
Olioso
,
A.
,
Mougenot
,
B.
,
Fanise
,
P.
,
Lili-Chabaane
,
Z.
, and
Lagouarde
,
J. P.
,
2018
, “
Evapotranspiration and Evaporation/Transpiration Partitioning With Dual Source Energy Balance Models in Agricultural Lands
,”
Proc. Int. Assoc. Hydrol. Sci.
,
380
, pp.
17
22
.10.5194/piahs-380-17-2018
136.
Peng
,
L.
,
Zeng
,
Z.
,
Wei
,
Z.
,
Chen
,
A.
,
Wood
,
E. F.
, and
Sheffield
,
J.
,
2019
, “
Determinants of the Ratio of Actual to Potential Evapotranspiration
,”
Global Change Biol.
,
25
(
4
), pp.
1326
1343
.10.1111/gcb.14577
137.
Diarra
,
A.
,
Jarlan
,
L.
,
Er-Raki
,
S.
,
Le Page
,
M.
,
Aouade
,
G.
,
Tavernier
,
A.
,
Boulet
,
G.
,
Ezzahar
,
J.
,
Merlin
,
O.
, and
Khabba
,
S.
,
2017
, “
Performance of the Two-Source Energy Budget (TSEB) Model for the Monitoring of Evapotranspiration Over Irrigated Annual Crops in North Africa
,”
Agric. Water Manage.
,
193
, pp.
71
88
.10.1016/j.agwat.2017.08.007
138.
Llorens
,
P.
, and
Domingo
,
F.
,
2007
, “
Rainfall Partitioning by Vegetation Under Mediterranean Conditions. A Review of Studies in Europe
,”
J. Hydrol.
,
335
(
1–2
), pp.
37
54
.10.1016/j.jhydrol.2006.10.032
139.
Schlesinger
,
W. H.
, and
Jasechko
,
S.
,
2014
, “
Transpiration in the Global Water Cycle
,”
Agric. Meteorol.
,
189–190
, pp.
115
117
.10.1016/j.agrformet.2014.01.011
140.
Mosthaf
,
K.
,
Helmig
,
R.
, and
Or
,
D.
,
2014
, “
Modeling and Analysis of Evaporation Processes From Porous Media on the REV Scale
,”
Water Resour. Res.
,
50
(
2
), pp.
1059
1079
.10.1002/2013WR014442
141.
Or
,
D.
,
Lehmann
,
P.
, and
Assouline
,
S.
,
2015
, “
Natural Length Scales Define the Range of Applicability of the Richards Equation for Capillary Flows
,”
Water Resour. Res.
,
51
(
9
), pp.
7130
7144
.10.1002/2015WR017034
142.
Bittelli
,
M.
,
Ventura
,
F.
,
Campbell
,
G. S.
,
Snyder
,
R. L.
,
Gallegati
,
F.
, and
Pisa
,
P. R.
,
2008
, “
Coupling of Heat, Water Vapor, and Liquid Water Fluxes to Compute Evaporation in Bare Soils
,”
J. Hydrol.
,
362
(
3–4
), pp.
191
205
.10.1016/j.jhydrol.2008.08.014
143.
Lamnatou
,
C.
, and
Chemisana
,
D.
,
2013
, “
Solar Radiation Manipulations and Their Role in Greenhouse Claddings: Fluorescent Solar Concentrators, Photoselective and Other Materials
,”
Renewable Sustainable Energy Rev.
,
27
, pp.
175
190
.10.1016/j.rser.2013.06.052
144.
Yao
,
Y.
,
2016
, “
Enhancement of Mass Transfer by Ultrasound: Application to Adsorbent Regeneration and Food Drying/Dehydration
,”
Ultrason. Sonochem.
,
31
, pp.
512
531
.10.1016/j.ultsonch.2016.01.039
145.
Zhao
,
C.-J.
,
Han
,
J.-W.
,
Yang
,
X.-T.
,
Qian
,
J.-P.
, and
Fan
,
B.-L.
,
2016
, “
A Review of Computational Fluid Dynamics for Forced-Air Cooling Process
,”
Appl. Energy
,
168
, pp.
314
331
.10.1016/j.apenergy.2016.01.101
146.
Akdeniz
,
V.
, and
Akalın
,
A. S.
,
2019
, “
New Approach for Yoghurt and Ice Cream Production: High-Intensity Ultrasound
,”
Trends Food Sci. Technol.
,
86
, pp.
392
398
.10.1016/j.tifs.2019.02.046
147.
Chemat
,
F.
,
Zill e
,
H.
, and
Khan
,
M. K.
,
2011
, “
Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction
,”
Ultrason. Sonochem.
,
18
(
4
), pp.
813
835
.10.1016/j.ultsonch.2010.11.023
148.
Zheng
,
L.
, and
Sun
,
D.-W.
,
2006
, “
Innovative Applications of Power Ultrasound During Food Freezing Processes—A Review
,”
Trends Food Sci. Technol.
,
17
(
1
), pp.
16
23
.10.1016/j.tifs.2005.08.010
149.
U.S. E. I. Administration
, and
Kuuskraa
,
V.
,
2011
, “
World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States
,” U.S. Department of Energy, Washington, DC,
Report
.https://www.eia.gov/analysis/studies/worldshalegas/archive/2011/pdf/fullreport.pdf
150.
Chong
,
Z. R.
,
Moh
,
J. W. R.
,
Yin
,
Z.
,
Zhao
,
J.
, and
Linga
,
P.
,
2018
, “
Effect of Vertical Wellbore Incorporation on Energy Recovery From Aqueous Rich Hydrate Sediments
,”
Appl. Energy
,
229
, pp.
637
647
.10.1016/j.apenergy.2018.08.020
151.
Ahmadi
,
G.
,
Ji
,
C.
, and
Smith
,
D. H.
,
2004
, “
Numerical Solution for Natural Gas Production From Methane Hydrate Dissociation
,”
J. Pet. Sci. Eng.
,
41
(
4
), pp.
269
285
.10.1016/j.profnurs.2003.09.004
152.
Kim
,
H.
,
Bishnoi
,
P. R.
,
Heidemann
,
R. A.
, and
Rizvi
,
S. S.
,
1987
, “
Kinetics of Methane Hydrate Decomposition
,”
Chem. Eng. Sci.
,
42
(
7
), pp.
1645
1653
.10.1016/0009-2509(87)80169-0
153.
Gudmundsson
,
J. S.
,
Parlaktuna
,
M.
, and
Khokhar
,
A.
,
1994
, “
Storage of Natural Gas as Frozen Hydrate
,”
SPE Prod. Facil.
,
9
(
1
), pp.
69
73
.10.2118/24924-PA
154.
Hong
,
H.
,
Pooladi-Darvish
,
M.
, and
Bishnoi
,
P.
,
2003
, “
Analytical Modelling of Gas Production From Hydrates in Porous Media
,”
J. Can. Pet. Technol.
,
42
(
11
), pp.
45
56
.10.2118/03-11-05
155.
Shi
,
B.-H.
,
Song
,
S.-F.
,
Lv
,
X.-F.
,
Li
,
W.-Q.
,
Wang
,
Y.
,
Ding
,
L.
,
Liu
,
Y.
,
Yang
,
J.-H.
,
Wu
,
H.-H.
,
Wang
,
W.
, and
Gong
,
J.
,
2018
, “
Investigation on Natural Gas Hydrate Dissociation From a Slurry to a Water-in-Oil Emulsion in a High-Pressure Flow Loop
,”
Fuel
,
233
, pp.
743
758
.10.1016/j.fuel.2018.06.054
156.
Guo
,
C.
,
Wei
,
M.
, and
Liu
,
H.
,
2018
, “
Study of Gas Production From Shale Reservoirs With Multi-Stage Hydraulic Fracturing Horizontal Well Considering Multiple Transport Mechanisms
,”
PLoS One
,
13
(
1
), p.
e0188480
.10.1371/journal.pone.0188480
157.
Freyman
,
M.
,
2014
, “
Hydraulic Fracturing & Water Stress: Water Demand by the Numbers
,”
Ceres
,
85
, pp.
49
50
.https://core.ac.uk/download/pdf/71364916.pdf
158.
Pothukuchi
,
K.
,
Arrowsmith
,
M.
, and
Lyon
,
N.
,
2018
, “
Hydraulic Fracturing: A Review of Implications for Food Systems Planning
,”
J. Plann. Lit.
,
33
(
2
), pp.
155
170
.10.1177/0885412217733991
159.
Bažant
,
Z. P.
,
Salviato
,
M.
,
Chau
,
V. T.
,
Viswanathan
,
H.
, and
Zubelewicz
,
A.
,
2014
, “
Why Fracking Works
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101010
10.1115/1.4028192
160.
O'Malley
,
D.
,
Karra
,
S.
,
Currier
,
R. P.
,
Makedonska
,
N.
,
Hyman
,
J. D.
, and
Viswanathan
,
H. S.
,
2016
, “
Where Does Water Go During Hydraulic Fracturing?
,”
Groundwater
,
54
(
4
), pp.
488
497
.10.1111/gwat.12380
161.
Scanlon
,
B. R.
,
Reedy
,
R. C.
,
Male
,
F.
, and
Walsh
,
M.
,
2017
, “
Water Issues Related to Transitioning From Conventional to Unconventional Oil Production in the Permian Basin
,”
Environ. Sci. Technol.
,
51
(
18
), pp.
10903
10912
.10.1021/acs.est.7b02185
162.
Cui
,
R.
,
Feng
,
Q.
,
Chen
,
H.
,
Zhang
,
W.
, and
Wang
,
S.
,
2019
, “
Multiscale Random Pore Network Modeling of Oil-Water Two-Phase Slip Flow in Shale Matrix
,”
J. Pet. Sci. Eng.
,
175
, pp.
46
59
.10.1016/j.petrol.2018.12.026
163.
Wang
,
Q.
, and
Cheng
,
Z.
,
2019
, “
A Fractal Model of Water Transport in Shale Reservoirs
,”
Chem. Eng. Sci.
,
198
, pp.
62
73
.10.1016/j.ces.2018.12.042
164.
Wu
,
K.
, and
Olson
,
J. E.
,
2015
, “
Simultaneous Multifracture Treatments: Fully Coupled Fluid Flow and Fracture Mechanics for Horizontal Wells
,”
SPE J.
,
20
(
2
), pp.
337
346
.10.2118/167626-PA
165.
Guo
,
J.
, and
Liu
,
Y.
,
2014
, “
A Comprehensive Model for Simulating Fracturing Fluid Leakoff in Natural Fractures
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
977
985
.10.1016/j.jngse.2014.10.020
166.
Li
,
X.
, and
Zhu
,
D.
,
2018
, “
Temperature Behavior During Multistage Fracture Treatments in Horizontal Wells
,”
SPE Prod. Oper.
,
33
(
3
), pp.
522
538
.10.2118/181876-PA
167.
Zou
,
C.
,
Ni
,
Y.
,
Li
,
J.
,
Kondash
,
A.
,
Coyte
,
R.
,
Lauer
,
N.
,
Cui
,
H.
,
Liao
,
F.
, and
Vengosh
,
A.
,
2018
, “
The Water Footprint of Hydraulic Fracturing in Sichuan Basin, China
,”
Sci. Total Environ.
,
630
, pp.
349
356
.10.1016/j.scitotenv.2018.02.219
168.
Liu
,
Z-B.
,
Dong
,
X-X.
, and
Min
,
C.
,
2018
, “
Transient Analysis of Contaminant Diffusion in the Wellbore of Shale Gas Horizontal Wells
,”
Water, Air, Soil Pollut.
,
229
(
7
), p.
221
.10.1007/s11270-018-3870-6
169.
Whitsitt
,
N.
, and
Dysart
,
G.
,
1970
, “
The Effect of Temperature on Stimulation Design
,”
J. Pet. Technol.
,
22
(
4
), pp.
493
502
.10.2118/2497-PA
170.
Sinclair
,
A. R.
,
1971
, “
Heat Transfer Effects in Deep Well Fracturing
,”
J. Pet. Technol.
,
23
(
12
), pp.
1484
1492
.10.2118/3011-PA
171.
Biot
,
M. A.
,
Masse
,
L.
, and
Medlin
,
W.
,
1987
, “
Temperature Analysis in Hydraulic Fracturing
,”
J. Pet. Technol.
,
39
(
11
), pp.
1389
1397
.10.2118/13228-PA
172.
Hoang
,
H.
,
Mahadevan
,
J.
, and
Lopez
,
H. D.
,
2011
, “
Interpretation of Wellbore Temperatures Measured Using Distributed Temperature Sensors During Hydraulic Fracturing
,” Paper No.
SPE-140442-MS
.10.2118/SPE-140442-MS
173.
Pityuk
,
Y. A.
,
Davletbayev
,
A. Y.
,
Musin
,
A.
,
Marin
,
D.
,
Seltikova
,
E.
,
Zarafutdinov
,
I.
,
Kovaleva
,
L.
,
Fursov
,
G.
,
Nazargalin
,
E.
, and
Mustafin
,
D.
,
2016
, “
3D Numerical Simulation of Pressure/Temperature Dynamics in Well With Fracture
,” Paper No.
SPE-181971-MS
. 10.2118/SPE-181971-MS
174.
Ben-Naceur
,
K.
, and
Stephenson
,
P.
,
1985
, “
Models of Heat Transfer in Hydraulic Fracturing
,” Paper No.
SPE-13865-MS
.10.2118/SPE-13865-MS
175.
U.S. Energy Information Administration,
2018
, “
Water Withdrawals by U.S. power Plants Have Been Declining
,” U.S. Energy Information Administration, Washington, DC, accessed May 14, 2020, https://www.eia.gov/todayinenergy/detail.php?id=37453
176.
Schneider
,
M.
, and
Froggatt
,
A.
,
2019
, “
The World Nuclear Industry Status Report
,” World Nuclear Industry Status Report, accessed Jan. 30, 2020, https://www.worldnuclearreport.org/The-World-Nuclear-Industry-Status-Report-2019-HTML.html
177.
Locatelli
,
G.
,
Mancini
,
M.
, and
Todeschini
,
N.
,
2013
, “
Generation IV Nuclear Reactors: Current Status and Future Prospects
,”
Energy Policy
,
61
, pp.
1503
1520
.10.1016/j.enpol.2013.06.101
178.
Wu
,
J.
,
Chen
,
J.
,
Kang
,
X.
,
Li
,
X.
,
Yu
,
C.
,
Zou
,
C.
, and
Cai
,
X.
,
2019
, “
A Novel Concept for a Molten Salt Reactor Moderated by Heavy Water
,”
Ann. Nucl. Energy
,
132
, pp.
391
403
.10.1016/j.anucene.2019.04.043
179.
U.S. Department of Energy
,
2015
, “
Sodium-Cooled Fast Reactor (SFR) Technology and Safety Overview
,” U.S. Department of Energy, Washington, DC.
180.
Idaho National Lab
,
2017
, “
Gas-Cooled Fast Reactor Research and Development Roadmap
,” Idaho National Lab, Idaho Falls, ID, accessed May 14, 2020, https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_1841.pdf
181.
Carelli
,
M. D.
,
Conway
,
L. E.
,
Oriani
,
L.
,
Petrović
,
B.
,
Lombardi
,
C. V.
,
Ricotti
,
M. E.
,
Barroso
,
A. C. O.
,
Collado
,
J. M.
,
Cinotti
,
L.
,
Todreas
,
N. E.
,
Grgić
,
D.
,
Moraes
,
M. M.
,
Boroughs
,
R. D.
,
Ninokata
,
H.
,
Ingersoll
,
D. T.
, and
Oriolo
,
F.
,
2004
, “
The Design and Safety Features of the IRIS Reactor
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
151
167
.10.1016/j.nucengdes.2003.11.022
182.
Handa
,
T.
,
Oda
,
Y.
,
Ono
,
Y.
,
Miyagawa
,
K.
,
Matsumoto
,
I.
,
Shimoji
,
K.
,
Inoue
,
T.
,
Ishikawa
,
H.
, and
Hayafune
,
H.
,
2011
, “
Status of Integrated IHX/Pump Development for JSFR
,”
J. Nucl. Sci. Technol.
,
48
(
4
), pp.
669
676
.10.1080/18811248.2011.9711748
183.
Hahn
,
D.
,
Kim
,
Y. I.
,
Lee
,
C. B.
,
Kim
,
S. O.
,
Lee
,
J. H.
,
Lee
,
Y. B.
,
Kim
,
B. H.
, and
Jeong
,
H. Y.
,
2007
, “
Conceptual Design of the Sodium-Cooled Fast Reactor KALIMER-600
,”
Nucl. Eng. Technol.
,
39
(
3
), pp.
193
206
.10.5516/NET.2007.39.3.193
184.
Triplett
,
B. S.
,
Loewen
,
E. P.
, and
Dooies
,
B. J.
,
2012
, “
PRISM: A Competitive Small Modular Sodium-Cooled Reactor
,”
Nucl. Technol.
,
178
(
2
), pp.
186
200
.10.13182/NT178-186
185.
Sienicki
,
J.
,
Moisseytsev
,
A.
,
Yang
,
W.
,
Wade
,
D.
,
Nikiforova
,
A.
,
Hanania
,
P.
,
Ryu
,
H.
,
Kulesza
,
K.
,
Kim
,
S.
, and
Halsey
,
W.
,
2008
, “
Status Report on the Small Secure Transportable Autonomous Reactor (SSTAR)/Lead-Cooled Fast Reactor (LFR) and Supporting Research and Development
,” Argonne National Lab. (ANL), Argonne, IL.
186.
Alemberti
,
A.
,
Carlsson
,
J.
,
Malambu
,
E.
,
Orden
,
A.
,
Struwe
,
D.
,
Agostini
,
P.
, and
Monti
,
S.
,
2011
, “
European Lead Fast Reactor—ELSY
,”
Nucl. Eng. Des.
,
241
(
9
), pp.
3470
3480
.10.1016/j.nucengdes.2011.03.029
187.
Locatelli
,
G.
,
Bingham
,
C.
, and
Mancini
,
M.
,
2014
, “
Small Modular Reactors: A Comprehensive Overview of Their Economics and Strategic Aspects
,”
Prog. Nucl. Energy
,
73
, pp.
75
85
.10.1016/j.pnucene.2014.01.010
188.
Boarin
,
S.
,
Locatelli
,
G.
,
Mancini
,
M.
, and
Ricotti
,
M. E.
,
2012
, “
Financial Case Studies on Small- and Medium-Size Modular Reactors
,”
Nucl. Technol.
,
178
(
2
), pp.
218
232
.10.13182/NT12-A13561
189.
Ichimiya
,
M.
,
2011
, “
The Status of Generation IV Sodium-Cooled Fast Reactor Technology Development and Its Future Project
,”
Energy Procedia
,
7
, pp.
79
87
.10.1016/j.egypro.2011.06.011
190.
Aoto
,
K.
,
Uto
,
N.
,
Sakamoto
,
Y.
,
Ito
,
T.
,
Toda
,
M.
, and
Kotake
,
S.
,
2011
, “
Design Study and R&D Progress on Japan Sodium-Cooled Fast Reactor
,”
J. Nucl. Sci. Technol.
,
48
(
4
), pp.
463
471
.10.1080/18811248.2011.9711720
191.
Cinotti
,
L.
,
Smith
,
C. F.
,
Sekimoto
,
H.
,
Mansani
,
L.
,
Reale
,
M.
, and
Sienicki
,
J. J.
,
2011
, “
Lead-Cooled System Design and Challenges in the Frame of Generation IV International Forum
,”
J. Nucl. Mater.
,
415
(
3
), pp.
245
253
.10.1016/j.jnucmat.2011.04.042
192.
Bandini
,
G.
,
Meloni
,
P.
, and
Polidori
,
M.
,
2011
, “
Thermal-Hydraulics Analyses of ELSY Lead Fast Reactor With Open Square Core Option
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1165
1171
.10.1016/j.nucengdes.2010.04.034
193.
Breeze
,
P.
,
2014
, “
Nuclear Power
,”
Power Generation Technologies
,
P.
,
Breeze
, ed., 2nd ed.,
Newnes
,
Boston, MA
, Chap.
17
.
194.
Yan
,
X.
,
Sato
,
H.
,
Inaba
,
Y.
,
Noguchi
,
H.
,
Tachibana
,
Y.
, and
Kunitomi
,
K.
,
2014
, “
Evaluation of GTHTR300A Nuclear Power Plant Design With Dry Cooling
,”
Int. J. Energy Res.
,
38
(
11
), pp.
1467
1477
.10.1002/er.3172
195.
Ishiyama
,
S.
,
Muto
,
Y.
,
Kato
,
Y.
,
Nishio
,
S.
,
Hayashi
,
T.
, and
Nomoto
,
Y.
,
2008
, “
Study of Steam, Helium and Supercritical CO2 Turbine Power Generations in Prototype Fusion Power Reactor
,”
Prog. Nucl. Energy
,
50
(
2–6
), pp.
325
332
.10.1016/j.pnucene.2007.11.078
196.
Edwards
,
J.
,
2017
, “
Thermal Energy Storage for Nuclear Power Applications
,”
M.S. thesis
, Kansas State University, Manhattan, KS.https://krex.k-state.edu/dspace/bitstream/handle/2097/36238/JacobEdwards2017.pdf?sequence=3&isAllowed=y
197.
Gao
,
F.
, and
Ko
,
W. I.
,
2014
, “
Modeling and System Analysis of Fuel Cycles for Nuclear Power Sustainability (I): Uranium Consumption and Waste Generation
,”
Ann. Nucl. Energy
,
65
, pp.
10
23
.10.1016/j.anucene.2013.10.014
198.
Romero
,
M.
,
Buck
,
R.
, and
Pacheco
,
J. E.
,
2002
, “
An Update on Solar Central Receiver Systems, Projects, and Technologies
,”
ASME J. Solar Energy Eng.
,
124
(
2
), pp.
98
108
.10.1115/1.1467921
199.
Price
,
H.
,
LüPfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Solar Energy Eng.
,
124
(
2
), pp.
109
125
.10.1115/1.1467922
200.
Sangi
,
R.
,
Amidpour
,
M.
, and
Hosseinizadeh
,
B.
,
2011
, “
Modeling and Numerical Simulation of Solar Chimney Power Plants
,”
Sol. Energy
,
85
(
5
), pp.
829
838
.10.1016/j.solener.2011.01.011
201.
dos Santos Bernardes
,
M. A.
,
2010
,
Solar Energy
,
InTechOpen
, London.
202.
Ferreira
,
A. G.
,
Maia
,
C. B.
,
Cortez
,
M. F.
, and
Valle
,
R. M.
,
2008
, “
Technical Feasibility Assessment of a Solar Chimney for Food Drying
,”
Sol. Energy
,
82
(
3
), pp.
198
205
.10.1016/j.solener.2007.08.002
203.
Kashiwa
,
B.
, and
Kashiwa
,
C. B.
,
2008
, “
The Solar Cyclone: A Solar Chimney for Harvesting Atmospheric Water
,”
Energy
,
33
(
2
), pp.
331
339
.10.1016/j.energy.2007.06.003
204.
Harishankar
,
S.
,
Kumar
,
R. S.
,
Sudharsan
,
K.
,
Vignesh
,
U.
, and
Viveknath
,
T.
,
2014
, “
Solar Powered Smart Irrigation System
,”
Adv. Electron. Electr. Eng.
,
4
(
4
), pp.
341
346
.https://www.ripublication.com/aeee_spl/aeeev4n4spl_03.pdf
205.
Bustamante
,
J. G.
,
Rattner
,
A. S.
, and
Garimella
,
S.
,
2016
, “
Achieving Near-Water-Cooled Power Plant Performance With Air-Cooled Condensers
,”
Appl. Therm. Eng.
,
105
, pp.
362
371
.10.1016/j.applthermaleng.2015.05.065
206.
Lee
,
G.
,
Ra
,
H.-S.
,
Lee
,
B.
,
Lee
,
Y.-S.
,
Roh
,
C. W.
,
Baik
,
Y.-J.
,
Cho
,
J.
, and
Shin
,
H.
,
2018
, “
Preliminary Study on the Effect of Dry/Wet Cooling Combinations for the Sustainable Management of Water of Cooling Tower
,”
Int. J. Low-Carbon Technol.
,
13
(
1
), pp.
61
66
.10.1093/ijlct/ctx020
207.
Alkhedhair
,
A.
,
Gurgenci
,
H.
,
Jahn
,
I.
,
Guan
,
Z.
, and
He
,
S.
,
2013
, “
Numerical Simulation of Water Spray for Pre-Cooling of Inlet Air in Natural Draft Dry Cooling Towers
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
416
424
.10.1016/j.applthermaleng.2013.08.012
208.
Harto
,
C. B.
,
Clark
,
C. E.
,
Schroeder
,
J. N.
, and
Mines
,
G.
, “
Updating GETEM to Include a Hybrid Cooling Option and Local Climate Variability for Binary Power Plants
,” Trans. - Geothermal Resources Council, 37, pp.
791
794
.
209.
Punwani
,
D. V.
,
Pierson
,
T.
,
Bagley
,
J.
, and
Ryan
,
W. A.
,
2001
, “
A Hybrid System for Combustion Turbine Inlet Air Cooling at a Cogeneration Plant in Pasadena, Texas/Discussion
,”
ASHRAE Trans.
,
107
, p.
875
.https://search.proquest.com/docview/192529781
210.
Smrekar
,
J.
,
Oman
,
J.
, and
Širok
,
B.
,
2006
, “
Improving the Efficiency of Natural Draft Cooling Towers
,”
Energy Convers. Manage.
,
47
(
9–10
), pp.
1086
1100
.10.1016/j.enconman.2005.07.012
211.
Wei
,
H.
,
Chen
,
L.
,
Huang
,
X.
,
Ge
,
Z.
,
Yang
,
L.
, and
Du
,
X.
,
2019
, “
Performance of a Novel Natural Draft Hybrid Cooling System With Serial Airside Heat Exchange
,”
Appl. Therm. Eng.
,
147
, pp.
361
370
.10.1016/j.applthermaleng.2018.10.105
212.
Sun
,
Y.
,
Guan
,
Z.
,
Gurgenci
,
H.
,
Wang
,
J.
,
Dong
,
P.
, and
Hooman
,
K.
,
2019
, “
Spray Cooling System Design and Optimization for Cooling Performance Enhancement of Natural Draft Dry Cooling Tower in Concentrated Solar Power Plants
,”
Energy
,
168
, pp.
273
284
.10.1016/j.energy.2018.11.111
213.
Al-Ansary
,
H. A.
,
Orfi
,
J. A.
, and
Ali
,
M. E.
,
2013
, “
Impact of the Use of a Hybrid Turbine Inlet Air Cooling System in Arid Climates
,”
Energy Convers. Manage.
,
75
, pp.
214
223
.10.1016/j.enconman.2013.06.005
214.
Gu
,
Z.
,
Chen
,
X.
,
Lubitz
,
W.
,
Li
,
Y.
, and
Luo
,
W.
,
2007
, “
Wind Tunnel Simulation of Exhaust Recirculation in an Air-Cooling System at a Large Power Plant
,”
Int. J. Therm. Sci.
,
46
(
3
), pp.
308
317
.10.1016/j.ijthermalsci.2006.04.007
215.
Hooman
,
K.
,
2010
, “
Dry Cooling Towers as Condensers for Geothermal Power Plants
,”
Int. Commun. Heat Mass Transfer
,
37
(
9
), pp.
1215
1220
.10.1016/j.icheatmasstransfer.2010.07.011
216.
Kong
,
Y.
,
Wang
,
W.
,
Huang
,
X.
,
Yang
,
L.
, and
Du
,
X.
,
2018
, “
Annularly Arranged Air-Cooled Condenser to Improve Cooling Efficiency of Natural Draft Direct Dry Cooling System
,”
Int. J. Heat Mass Transfer
,
118
, pp.
587
601
.10.1016/j.ijheatmasstransfer.2017.11.031
217.
Kong
,
Y.
,
Wang
,
W.
,
Huang
,
X.
,
Yang
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2017
, “
Direct Dry Cooling System Through Hybrid Ventilation for Improving Cooling Efficiency in Power Plants
,”
Appl. Therm. Eng.
,
119
, pp.
254
268
.10.1016/j.applthermaleng.2017.03.067
218.
Kong
,
Y.
,
Wang
,
W.
,
Zuo
,
Z.
,
Yang
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2019
, “
Combined Air-Cooled Condenser Layout With in Line Configured Finned Tube Bundles to Improve Cooling Performance
,”
Appl. Therm. Eng.
,
154
, pp.
505
518
.10.1016/j.applthermaleng.2019.03.099
219.
Wu
,
X.
,
Yang
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2014
, “
Flow and Heat Transfer Characteristics of Indirect Dry Cooling System With Horizontal Heat Exchanger A-Frames at Ambient Winds
,”
Int. J. Therm. Sci.
,
79
, pp.
161
175
.10.1016/j.ijthermalsci.2014.01.007
220.
Yang
,
L.
,
Chen
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2013
, “
Effects of Ambient Winds on the Thermo-Flow Performances of Indirect Dry Cooling System in a Power Plant
,”
Int. J. Therm. Sci.
,
64
, pp.
178
187
.10.1016/j.ijthermalsci.2012.08.010
221.
Zavaragh
,
H. G.
,
Ceviz
,
M. A.
, and
Tabar
,
M. T. S.
,
2016
, “
Analysis of Windbreaker Combinations on Steam Power Plant Natural Draft Dry Cooling Towers
,”
Appl. Therm. Eng.
,
99
, pp.
550
559
.10.1016/j.applthermaleng.2016.01.103
222.
Zou
,
Z.
,
Gong
,
H.
,
Lie
,
X.
,
Li
,
X.
, and
Yang
,
Y.
,
2017
, “
Numerical Investigation of the Crosswind Effects on the Performance of a Hybrid Cooling-Tower-Solar-Chimney System
,”
Appl. Therm. Eng.
,
126
, pp.
661
669
.10.1016/j.applthermaleng.2017.07.198
223.
Arie
,
M. A.
,
Shooshtari
,
A. H.
, and
Ohadi
,
M. M.
,
2018
, “
Experimental Characterization of an Additively Manufactured Heat Exchanger for Dry Cooling of Power Plants
,”
Appl. Therm. Eng.
,
129
, pp.
187
198
.10.1016/j.applthermaleng.2017.09.140
224.
Ghorbani
,
B.
,
Ghashami
,
M.
,
Ashjaee
,
M.
, and
Hosseinzadegan
,
H.
,
2015
, “
Electricity Production With Low Grade Heat in Thermal Power Plants by Design Improvement of a Hybrid Dry Cooling Tower and a Solar Chimney Concept
,”
Energy Convers. Manage.
,
94
, pp.
1
11
.10.1016/j.enconman.2015.01.044
225.
Guan
,
Z.
,
Gurgenci
,
H.
, and
Zou
,
Z.
,
2016
, “
Design of Solar Enhanced Natural Draft Dry Cooling Tower for Solar Thermal Power Plants
,”
J. Int. Assoc. Shell Spat. Struct.
,
57
(
1
), pp.
97
103
.10.20898/j.iass.2016.187.763
226.
Kong
,
Y.
,
Yang
,
L.
,
Du
,
X.
, and
Yang
,
Y.
,
2016
, “
Impacts of Geometric Structures on Thermo-Flow Performances of Plate Fin-Tube Bundles
,”
Int. J. Therm. Sci.
,
107
, pp.
161
178
.10.1016/j.ijthermalsci.2016.04.011
227.
Li
,
J.
,
Guo
,
H.
,
Cheng
,
Q.
, and
Huang
,
S.
,
2017
, “
Optimal Turbine Pressure Drop for Solar Chimney-Aided Dry Cooling System in Coal-Fired Power Plants
,”
Energy Convers. Manage.
,
133
, pp.
87
96
.10.1016/j.enconman.2016.11.063
228.
Mao
,
S.
,
Love
,
N.
,
Leanos
,
A.
, and
Rodriguez-Melo
,
G.
,
2014
, “
Correlation Studies of Hydrodynamics and Heat Transfer in Metal Foam Heat Exchangers
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
104
118
.10.1016/j.applthermaleng.2014.06.035
229.
Zou
,
Z.
,
Guan
,
Z.
,
Gurgenci
,
H.
, and
Lu
,
Y.
,
2012
, “
Solar Enhanced Natural Draft Dry Cooling Tower for Geothermal Power Applications
,”
Sol. Energy
,
86
(
9
), pp.
2686
2694
.10.1016/j.solener.2012.06.003
230.
Liu
,
H.
,
Weibel
,
J.
, and
Groll
,
E.
,
2017
, “
Performance Analysis of an Updraft Tower System for Dry Cooling in Large-Scale Power Plants
,”
Energies
,
10
(
11
), p.
1812
.10.3390/en10111812
231.
Lin
,
K.-T.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2018
, “
Computational Modeling of Single-Phase Laminar Flow Heat Transfer in Complex Plate-Fin Ducts
,”
Proceedings of the International Heat Transfer Conference Digital Library
, Beijing, China, Aug. 10–15, pp.
5381
5388
.10.1615/IHTC16.hte.024222
232.
Shi
,
D.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
, “
Computational Modeling of Low Reynolds Number Air Flows in Wavy-Plate-Fin Channels: Contribution of Pressure Drag on Performance
,”
Proceedings of the International Heat Transfer Conference Digital Library
, Beijing, China, Aug. 10–15, pp.
5123
5130
.10.1615/IHTC16.hte.024221
233.
Haertel
,
J. H.
, and
Nellis
,
G. F.
,
2017
, “
A Fully Developed Flow Thermofluid Model for Topology Optimization of 3D-Printed Air-Cooled Heat Exchangers
,”
Appl. Therm. Eng.
,
119
, pp.
10
24
.10.1016/j.applthermaleng.2017.03.030
234.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Rao
,
V. V.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2017
, “
Air-Side Heat Transfer Enhancement Utilizing Design Optimization and an Additive Manufacturing Technique
,”
ASME J. Heat Transfer
,
139
(
3
), p.
031901
.10.1115/1.4035068
235.
Hu
,
H.
,
Li
,
Z.
,
Jiang
,
Y.
, and
Du
,
X.
,
2018
, “
Thermodynamic Characteristics of Thermal Power Plant With Hybrid (Dry/Wet) Cooling System
,”
Energy
,
147
, pp.
729
741
.10.1016/j.energy.2018.01.074
236.
Wagner
,
M. J.
, and
Kutscher
,
C.
,
2010
, “
The Impact of Hybrid Wet/Dry Cooling on Concentrating Solar Power Plant Performance
,”
ASME
Paper No. ES2010-90442. 10.1115/ES2010-90442
237.
Zhai
,
H.
, and
Rubin
,
E. S.
,
2016
, “
A Techno-Economic Assessment of Hybrid Cooling Systems for Coal-and Natural-Gas-Fired Power Plants With and Without Carbon Capture and Storage
,”
Environ. Sci. Technol.
,
50
(
7
), pp.
4127
4134
.10.1021/acs.est.6b00008
238.
Cath
,
T.
,
Walker
,
N.
,
Childress
,
A.
,
Hutton
,
M.
, and
Weinberg
,
A.
,
2008
, “
Assessment of Traditional and Novel Membrane Processes for Recovery of Cooling Tower Water in Geothermal Power Plants
,”
GRC Trans.
,
32
, pp.
401
406
.https://www.geothermal-library.org/index.php?mode=pubs&action=view&record=1028356
239.
Farahani
,
M. H. D. A.
,
Borghei
,
S. M.
, and
Vatanpour
,
V.
,
2016
, “
Recovery of Cooling Tower Blowdown Water for Reuse: The Investigation of Different Types of Pretreatment Prior Nanofiltration and Reverse Osmosis
,”
J. Water Process Eng.
,
10
, pp.
188
199
.10.1016/j.jwpe.2016.01.011
240.
Altman
,
S. J.
,
Jensen
,
R. P.
,
Cappelle
,
M. A.
,
Sanchez
,
A. L.
,
Everett
,
R. L.
,
Anderson
,
H. L.
, Jr.
, and
McGrath
,
L. K.
,
2012
, “
Membrane Treatment of Side-Stream Cooling Tower Water for Reduction of Water Usage
,”
Desalination
,
285
, pp.
177
183
.10.1016/j.desal.2011.09.052
241.
Damak
,
M.
, and
Varanasi
,
K. K.
,
2018
, “
Electrostatically Driven Fog Collection Using Space Charge Injection
,”
Sci. Adv.
,
4
(
6
), p.
eaao5323
.10.1126/sciadv.aao5323
242.
Ghosh
,
R.
,
Ray
,
T. K.
, and
Ganguly
,
R.
,
2015
, “
Cooling Tower Fog Harvesting in Power Plants—A Pilot Study
,”
Energy
,
89
, pp.
1018
1028
.10.1016/j.energy.2015.06.050
243.
He
,
S.
,
Zhang
,
Z.
,
Gao
,
M.
,
Sun
,
F.
,
Lucas
,
M.
, and
Hooman
,
K.
,
2019
, “
Experimental Study on the Air-Side Flow Resistance of Different Water Collecting Devices for Wet Cooling Tower Applications
,”
J. Wind Eng. Ind. Aerodyn.
,
190
, pp.
53
60
.10.1016/j.jweia.2019.04.012
244.
Huber
,
R. A.
,
Guanes
,
G.
, and
Derby
,
M. M.
,
2018
, “
Liquid Removal Through Vibrations on a Flexible Film for Condensing/Dehumidication
,”
ASHRAE 2018 Winter Conference
, Chicago, IL, Jan. 20–24, American Society of Heating, Refrigeration, and Air Conditioning Engineers, pp.
1
8
.
245.
Huber
,
R. A.
,
Campbell
,
M.
,
Doughramaji
,
N.
, and
Derby
,
M. M.
,
2019
, “
Vibration-Enhanced Droplet Motion Modes: Simulations of Rocking, Ratcheting, Ratcheting With Breakup, and Ejection
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071105
.10.1115/1.4042037
246.
Edwards
,
J.
,
Bindra
,
H.
, and
Sabharwall
,
P.
,
2016
, “
Exergy Analysis of Thermal Energy Storage Options With Nuclear Power Plants
,”
Ann. Nucl. Energy
,
96
, pp.
104
111
.10.1016/j.anucene.2016.06.005
247.
Forsberg
,
C.
,
Parsons
,
J.
,
Haratyk
,
G.
,
Jenkins
,
J.
,
Wooten
,
J.
,
Gasper
,
J.
, and
Brick
,
S.
,
2017
, “
Light Water Reactor Heat Storage for Peak Power and Increased Revenue: Focused Workshop on Near Term Options
,” MIT Center for Advanced Nuclear Energy Systems, Cambridge, MA.
248.
Sohal
,
M. S.
,
Ebner
,
M. A.
,
Sabharwall
,
P.
, and
Sharpe
,
P.
,
2010
, “
Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties
,” Idaho National Laboratory (INL), Idaho Falls, ID.
249.
Bejan
,
A.
,
1978
, “
Two Thermodynamic Optima in the Design of Sensible Heat Units for Energy Storage
,”
ASME J. Heat Transfer
,
100
(
4
), pp.
708
712
.10.1115/1.3450882
250.
Krane
,
R. J.
,
1987
, “
A Second Law Analysis of the Optimum Design and Operation of Thermal Energy Storage Systems
,”
Int. J. Heat Mass Transfer
,
30
(
1
), pp.
43
57
.10.1016/0017-9310(87)90059-7
251.
Bindra
,
H.
,
Bueno
,
P.
, and
Morris
,
J. F.
,
2014
, “
Sliding Flow Method for Exergetically Efficient Packed Bed Thermal Storage
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
201
208
.10.1016/j.applthermaleng.2013.12.028
252.
Bindra
,
H.
,
Bueno
,
P.
,
Morris
,
J. F.
, and
Shinnar
,
R.
,
2013
, “
Thermal Analysis and Exergy Evaluation of Packed Bed Thermal Storage Systems
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
255
263
.10.1016/j.applthermaleng.2012.12.007
253.
Breeze
,
P.
,
2016
,
Nuclear Power
,
Academic Press
, Cambridge, MA.
254.
LaBar
,
M.
,
Shenoy
,
A.
,
Simon
,
W.
, and
Campbell
,
E.
,
2003
, “
Status of the GT-MHR for Electricity Production
,”
Proceedings of the World Nuclear Association Symposium
, London, Sept. 3–5, pp.
3
5
.
255.
Zhao
,
H.
,
Zhang
,
H.
,
Sharpe
,
P.
,
Hamanaka
,
B.
,
Yan
,
W.
, and
Jeong
,
W.
,
2010
, “
Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting
,” Idaho National Laboratory (INL), Idaho Falls, ID.
256.
Winter
,
R. L.
, and
McCarthy
,
M.
,
2020
, “
Dewetting From Amphiphilic Minichannel Surfaces During Condensation
,”
ACS Appl. Mater. Interfaces
,
12
(
6
), pp.
7815
7825
.10.1021/acsami.9b21265
257.
Enright
,
R.
,
Miljkovic
,
N.
,
Alvarado
,
J. L.
,
Kim
,
K.
, and
Rose
,
J. W.
,
2014
, “
Dropwise Condensation on Micro-and Nanostructured Surfaces
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
223
250
.10.1080/15567265.2013.862889
258.
Derby
,
M. M.
,
Chatterjee
,
A.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2014
, “
Flow Condensation Heat Transfer Enhancement in a Mini-Channel With Hydrophobic and Hydrophilic Patterns
,”
Int. J. Heat Mass Transfer
,
68
, pp.
151
160
.10.1016/j.ijheatmasstransfer.2013.09.024
259.
Miljkovic
,
N.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Growth Dynamics During Dropwise Condensation on Nano Structured Superhydrophobic Surfaces
,”
ASME
Paper No. MNHMT2012-75278. 10.1115/MNHMT2012-75278
260.
Miljkovic
,
N.
, and
Wang
,
E. N.
,
2013
, “
Condensation Heat Transfer on Superhydrophobic Surfaces
,”
MRS Bull.
,
38
(
5
), pp.
397
406
.10.1557/mrs.2013.103
261.
Chen
,
X.
, and
Derby
,
M. M.
,
2016
, “
Combined Visualization and Heat Transfer Measurements for Steam Flow Condensation in Hydrophilic and Hydrophobic Mini-Gaps
,”
ASME J. Heat Transfer
,
138
(
9
), p.
091503
.10.1115/1.4033496
262.
Shatat
,
M.
,
Worall
,
M.
, and
Riffat
,
S.
,
2013
, “
Opportunities for Solar Water Desalination Worldwide
,”
Sustainable Cities Soc.
,
9
, pp.
67
80
.10.1016/j.scs.2013.03.004
263.
Abad
,
H. K. S.
,
Ghiasi
,
M.
,
Mamouri
,
S. J.
, and
Shafii
,
M.
,
2013
, “
A Novel Integrated Solar Desalination System With a Pulsating Heat Pipe
,”
Desalination
,
311
, pp.
206
210
.10.1016/j.desal.2012.10.029
264.
Sharshir
,
S.
,
Peng
,
G.
,
Yang
,
N.
,
El-Samadony
,
M.
, and
Kabeel
,
A.
,
2016
, “
A Continuous Desalination System Using Humidification–Dehumidification and a Solar Still With an Evacuated Solar Water Heater
,”
Appl. Therm. Eng.
,
104
, pp.
734
742
.10.1016/j.applthermaleng.2016.05.120
265.
Ghaffour
,
N.
,
Lattemann
,
S.
,
Missimer
,
T.
,
Ng
,
K. C.
,
Sinha
,
S.
, and
Amy
,
G.
,
2014
, “
Renewable Energy-Driven Innovative Energy-Efficient Desalination Technologies
,”
Appl. Energy
,
136
, pp.
1155
1165
.10.1016/j.apenergy.2014.03.033
266.
Kabeel
,
A.
,
Khalil
,
A.
,
Omara
,
Z.
, and
Younes
,
M.
,
2012
, “
Theoretical and Experimental Parametric Study of Modified Stepped Solar Still
,”
Desalination
,
289
, pp.
12
20
.10.1016/j.desal.2011.12.023
267.
Nada
,
S.
,
Elattar
,
H.
, and
Fouda
,
A.
,
2015
, “
Experimental Study for Hybrid Humidification–Dehumidification Water Desalination and Air Conditioning System
,”
Desalination
,
363
, pp.
112
125
.10.1016/j.desal.2015.01.032
268.
Yamalı
,
C.
, and
Solmuş
,
İ.
,
2007
, “
Theoretical Investigation of a Humidification-Dehumidification Desalination System Configured by a Double-Pass Flat Plate Solar Air Heater
,”
Desalination
,
205
(
1–3
), pp.
163
177
.10.1016/j.desal.2006.02.053
269.
Zhani
,
K.
,
2013
, “
Solar Desalination Based on Multiple Effect Humidification Process: Thermal Performance and Experimental Validation
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
406
417
.10.1016/j.rser.2013.03.064
270.
Nebbia
,
G.
, and
Menozzi
,
G. N.
,
1966
, “
A Short History of Water Desalination
,” II Inchiesta Internazionale, Milano, Italy, Apr. 18–19, pp.
129
172
.
271.
Dwivedi
,
V.
, and
Tiwari
,
G.
,
2009
, “
Comparison of Internal Heat Transfer Coefficients in Passive Solar Stills by Different Thermal Models: An Experimental Validation
,”
Desalination
,
246
(
1–3
), pp.
304
318
.10.1016/j.desal.2008.06.024
272.
Nijmeh
,
S.
,
Odeh
,
S.
, and
Akash
,
B.
,
2005
, “
Experimental and Theoretical Study of a Single-Basin Solar Sill in Jordan
,”
Int. Commun. Heat Mass Transfer
,
32
(
3–4
), pp.
565
572
.10.1016/j.icheatmasstransfer.2004.06.006
273.
Al-Nimr
,
M. A.
, and
Al-Ammari
,
W. A.
,
2016
, “
A Novel Hybrid PV-Distillation System
,”
Sol. Energy
,
135
, pp.
874
883
.10.1016/j.solener.2016.06.061
274.
Gholinejad
,
M.
,
Bakhtiari
,
A.
, and
Bidi
,
M.
,
2016
, “
Effects of Tracking Modes on the Performance of a Solar MED Plant
,”
Desalination
,
380
, pp.
29
42
.10.1016/j.desal.2015.11.015
275.
Sahota
,
L.
, and
Tiwari
,
G.
,
2016
, “
Effect of Al2O3 Nanoparticles on the Performance of Passive Double Slope Solar Still
,”
Sol. Energy
,
130
, pp.
260
272
.10.1016/j.solener.2016.02.018
276.
Tenthani
,
C.
,
Madhlopa
,
A.
, and
Kimambo
,
C.
,
2012
, “
Improved Solar Still for Water Purification
,”
J. Sustainable Energy Environ.
,
3
(
3
), pp.
111
113
.http://www.jseejournal.com/searchresult.php?search=tenthani
277.
Hamadou
,
O. A.
, and
Abdellatif
,
K.
,
2014
, “
Modeling an Active Solar Still for Sea Water Desalination Process Optimization
,”
Desalination
,
354
, pp.
1
8
.10.1016/j.desal.2014.09.019
278.
Ansari
,
O.
,
Asbik
,
M.
,
Bah
,
A.
,
Arbaoui
,
A.
, and
Khmou
,
A.
,
2013
, “
Desalination of the Brackish Water Using a Passive Solar Still With a Heat Energy Storage System
,”
Desalination
,
324
, pp.
10
20
.10.1016/j.desal.2013.05.017
279.
Madhlopa
,
A.
, and
Johnstone
,
C.
,
2009
, “
Numerical Study of a Passive Solar Still With Separate Condenser
,”
Renewable Energy
,
34
(
7
), pp.
1668
1677
.10.1016/j.renene.2008.12.032
280.
Arunkumar
,
T.
,
Jayaprakash
,
R.
,
Denkenberger
,
D.
,
Ahsan
,
A.
,
Okundamiya
,
M. S.
,
Kumar
,
S.
,
Tanaka
,
H.
, and
Aybar
,
H. Ş.
,
2012
, “
An Experimental Study on a Hemispherical Solar Still
,”
Desalination
,
286
, pp.
342
348
.10.1016/j.desal.2011.11.047
281.
Alklaibi
,
A.
, and
Lior
,
N.
,
2006
, “
Heat and Mass Transfer Resistance Analysis of Membrane Distillation
,”
J. Membr. Sci.
,
282
(
1–2
), pp.
362
369
.10.1016/j.memsci.2006.05.040
282.
Ali
,
E.
, and
Orfi
,
J.
,
2018
, “
An Experimentally Calibrated Model for Heat and Mass Transfer in Full-Scale Direct Contact Membrane Distillation
,”
Desalin. Water Treat.
,
116
, pp.
1
18
.10.5004/dwt.2018.22471
283.
Karam
,
A. M.
,
Alsaadi
,
A. S.
,
Ghaffour
,
N.
, and
Laleg-Kirati
,
T. M.
,
2017
, “
Analysis of Direct Contact Membrane Distillation Based on a Lumped-Parameter Dynamic Predictive Model
,”
Desalination
,
402
, pp.
50
61
.10.1016/j.desal.2016.09.002
284.
Amokrane
,
M.
,
Sadaoui
,
D.
,
Koutsou
,
C.
,
Karabelas
,
A.
, and
Dudeck
,
M.
,
2015
, “
A Study of Flow Field and Concentration Polarization Evolution in Membrane Channels With Two-Dimensional Spacers During Water Desalination
,”
J. Membr. Sci.
,
477
, pp.
139
150
.10.1016/j.memsci.2014.11.029
285.
Orfi
,
J.
,
Loussif
,
N.
, and
Davies
,
P. A.
,
2016
, “
Heat and Mass Transfer in Membrane Distillation Used for Desalination With Slip Flow
,”
Desalination
,
381
, pp.
135
142
.10.1016/j.desal.2015.12.009
286.
Keulen
,
L.
,
Van Der Ham
,
L.
,
Kuipers
,
N.
,
Hanemaaijer
,
J.
,
Vlugt
,
T.
, and
Kjelstrup
,
S.
,
2017
, “
Membrane Distillation Against a Pressure Difference
,”
J. Membr. Sci.
,
524
, pp.
151
162
.10.1016/j.memsci.2016.10.054
287.
Rezakazemi
,
M.
,
2018
, “
CFD Simulation of Seawater Purification Using Direct Contact Membrane Desalination (DCMD) System
,”
Desalination
,
443
, pp.
323
332
.10.1016/j.desal.2017.12.048
288.
Kumar
,
A.
,
Phillips
,
K. R.
,
Thiel
,
G. P.
,
Schröder
,
U.
, and
Lienhard
,
J. H.
,
2019
, “
Direct Electrosynthesis of Sodium Hydroxide and Hydrochloric Acid From Brine Streams
,”
Nat. Catal.
,
2
(
2
), pp.
106
113
.10.1038/s41929-018-0218-y
289.
Khalifa
,
A.
,
Ahmad
,
H.
,
Antar
,
M.
,
Laoui
,
T.
, and
Khayet
,
M.
,
2017
, “
Experimental and Theoretical Investigations on Water Desalination Using Direct Contact Membrane Distillation
,”
Desalination
,
404
, pp.
22
34
.10.1016/j.desal.2016.10.009
290.
Khayet
,
M.
,
Matsuura
,
T.
,
Mengual
,
J.
, and
Qtaishat
,
M.
,
2006
, “
Design of Novel Direct Contact Membrane Distillation Membranes
,”
Desalination
,
192
(
1–3
), pp.
105
111
.10.1016/j.desal.2005.06.047
291.
Liao
,
Y.
,
Wang
,
R.
, and
Fane
,
A. G.
,
2014
, “
Fabrication of Bioinspired Composite Nanofiber Membranes With Robust Superhydrophobicity for Direct Contact Membrane Distillation
,”
Environ. Sci. Technol.
,
48
(
11
), pp.
6335
6341
.10.1021/es405795s
292.
Khalifa
,
A.
,
Lawal
,
D.
,
Antar
,
M.
, and
Khayet
,
M.
,
2015
, “
Experimental and Theoretical Investigation on Water Desalination Using Air Gap Membrane Distillation
,”
Desalination
,
376
, pp.
94
108
.10.1016/j.desal.2015.08.016
293.
Haque
,
M. R.
, and
Betz
,
A. R.
,
2018
, “
Atmospheric Condensation Performance of Plain Copper and Graphene Oxide Coated Copper Surfaces
,”
ASME
Paper No. ICNMM2018-7610. 10.1115/ICNMM2018-7610
294.
Preston
,
D. J.
,
Mafra
,
D. L.
,
Miljkovic
,
N.
,
Kong
,
J.
, and
Wang
,
E. N.
,
2015
, “
Scalable Graphene Coatings for Enhanced Condensation Heat Transfer
,”
Nano Lett.
,
15
(
5
), pp.
2902
2909
.10.1021/nl504628s
295.
Bhadra
,
M.
,
Roy
,
S.
, and
Mitra
,
S.
,
2016
, “
Desalination Across a Graphene Oxide Membrane Via Direct Contact Membrane Distillation
,”
Desalination
,
378
, pp.
37
43
.10.1016/j.desal.2015.09.026
296.
Li
,
G.-P.
, and
Zhang
,
L.-Z.
,
2017
, “
Laminar Flow and Conjugate Heat and Mass Transfer in a Hollow Fiber Membrane Bundle Used for Seawater Desalination
,”
Int. J. Heat Mass Transfer
,
111
, pp.
123
137
.10.1016/j.ijheatmasstransfer.2017.03.107
297.
Li
,
G.-P.
, and
Zhang
,
L.-Z.
,
2017
, “
Conjugate Heat and Mass Transfer in a Cross-Flow Hollow Fiber Membrane Bundle Used for Seawater Desalination Considering Air Side Turbulence
,”
J. Membr. Sci.
,
533
, pp.
321
335
.10.1016/j.memsci.2017.03.051
298.
Perrotta
,
M.
,
Saielli
,
G.
,
Casella
,
G.
,
Macedonio
,
F.
,
Giorno
,
L.
,
Drioli
,
E.
, and
Gugliuzza
,
A.
,
2017
, “
An Ultrathin Suspended Hydrophobic Porous Membrane for High-Efficiency Water Desalination
,”
Appl. Mater. Today
,
9
, pp.
1
9
.10.1016/j.apmt.2017.04.009
299.
Ong
,
C. L.
,
Escher
,
W.
,
Paredes
,
S.
,
Khalil
,
A.
, and
Michel
,
B.
,
2012
, “
A Novel Concept of Energy Reuse From High Concentration Photovoltaic Thermal (HCPVT) System for Desalination
,”
Desalination
,
295
, pp.
70
81
.10.1016/j.desal.2012.04.005
300.
Suárez
,
F.
,
Ruskowitz
,
J. A.
,
Tyler
,
S. W.
, and
Childress
,
A. E.
,
2015
, “
Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds
,”
Appl. Energy
,
158
, pp.
532
539
.10.1016/j.apenergy.2015.08.110
301.
Aljehani
,
A.
,
Razack
,
S. A. K.
,
Nitsche
,
L.
, and
Al-Hallaj
,
S.
,
2018
, “
Design and Optimization of a Hybrid Air Conditioning System With Thermal Energy Storage Using Phase Change Composite
,”
Energy Convers. Manage.
,
169
, pp.
404
418
.10.1016/j.enconman.2018.05.040
302.
Wang
,
E. N.
, and
Karnik
,
R.
,
2012
, “
Water Desalination: Graphene Cleans Up Water
,”
Nat. Nanotechnol.
,
7
(
9
), pp.
552
554
.10.1038/nnano.2012.153
303.
Mokheimer
,
E. M.
,
Sahin
,
A. Z.
,
Al-Sharafi
,
A.
, and
Ali
,
A. I.
,
2013
, “
Modeling and Optimization of Hybrid Wind–Solar-Powered Reverse Osmosis Water Desalination System in Saudi Arabia
,”
Energy Convers. Manage.
,
75
, pp.
86
97
.10.1016/j.enconman.2013.06.002
304.
Anqi
,
A. E.
,
Alkhamis
,
N.
, and
Oztekin
,
A.
,
2016
, “
Steady Three Dimensional Flow and Mass Transfer Analyses for Brackish Water Desalination by Reverse Osmosis Membranes
,”
Int. J. Heat Mass Transfer
,
101
, pp.
399
411
.10.1016/j.ijheatmasstransfer.2016.05.102
305.
Li
,
W.
,
Su
,
X.
,
Palazzolo
,
A.
,
Ahmed
,
S.
, and
Thomas
,
E.
,
2017
, “
Reverse Osmosis Membrane, Seawater Desalination With Vibration Assisted Reduced Inorganic Fouling
,”
Desalination
,
417
, pp.
102
114
.10.1016/j.desal.2017.05.016
306.
Humplik
,
T.
,
Lee
,
J.
,
O'Hern
,
S.
,
Laoui
,
T.
,
Karnik
,
R.
, and
Wang
,
E. N.
,
2017
, “
Enhanced Water Transport and Salt Rejection Through Hydrophobic Zeolite Pores
,”
Nanotechnology
,
28
(
50
), p.
505703
.10.1088/1361-6528/aa9773
307.
Warsinger
,
D. M.
,
Tow
,
E. W.
,
Nayar
,
K. G.
,
Maswadeh
,
L. A.
, and
Lienhard V
,
J. H.
,
2016
, “
Energy Efficiency of Batch and Semi-Batch (CCRO) Reverse Osmosis Desalination
,”
Water Res.
,
106
, pp.
272
282
.10.1016/j.watres.2016.09.029
308.
Fellah
,
G.
,
2018
, “
Performance Analysis of Humidification-Dehumidification Desalination Processes, i-Manager's
,”
J. Future Eng. Technol.
,
14
(
1
), p.
16
.https://search.proquest.com/docview/2165547524
309.
Ettouney
,
H.
,
2005
, “
Design and Analysis of Humidification Dehumidification Desalination Process
,”
Desalination
,
183
(
1–3
), pp.
341
352
.10.1016/j.desal.2005.03.039
310.
Al-Enezi
,
G.
,
Ettouney
,
H.
, and
Fawzy
,
N.
,
2006
, “
Low Temperature Humidification Dehumidification Desalination Process
,”
Energy Convers. Manage.
,
47
(
4
), pp.
470
484
.10.1016/j.enconman.2005.04.010
311.
Morales
,
A. A.
, and
Carvajal
,
D. S.
,
2017
, “
Heat and Mass Transfer in a Direct Contact Humidifier of a Humidification-Dehumidification Desalination System
,”
IEEE Sixth International Conference on Renewable Energy Research and Applications (ICRERA)
, San Diego, CA, Dec. 5–8, pp.
273
278
.
312.
Saeed
,
A.
,
Antar
,
M. A.
,
Sharqawy
,
M. H.
, and
Badr
,
H. M.
,
2016
, “
CFD Modeling of Humidification Dehumidification Distillation Process
,”
Desalination
,
395
, pp.
46
56
.10.1016/j.desal.2016.03.011
313.
Orfi
,
J.
,
Laplante
,
M.
,
Marmouch
,
H.
,
Galanis
,
N.
,
Benhamou
,
B.
,
Nasrallah
,
S. B.
, and
Nguyen
,
C.
,
2004
, “
Experimental and Theoretical Study of a Humidification-Dehumidification Water Desalination System Using Solar Energy
,”
Desalination
,
168
, pp.
151
159
.10.1016/j.desal.2004.06.181
314.
Elattar
,
H.
,
Fouda
,
A.
, and
Nada
,
S.
,
2016
, “
Performance Investigation of a Novel Solar Hybrid Air Conditioning and Humidification–Dehumidification Water Desalination System
,”
Desalinatrion
,
382
, pp.
28
42
.10.1016/j.desal.2015.12.023
315.
Hamed
,
M. H.
,
Kabeel
,
A.
,
Omara
,
Z.
, and
Sharshir
,
S.
,
2015
, “
Mathematical and Experimental Investigation of a Solar Humidification–Dehumidification Desalination Unit
,”
Desalination
,
358
, pp.
9
17
.10.1016/j.desal.2014.12.005
316.
Kim
,
H.
,
Cho
,
H. J.
,
Narayanan
,
S.
,
Yang
,
S.
,
Furukawa
,
H.
,
Schiffres
,
S.
,
Li
,
X.
,
Zhang
,
Y.-B.
,
Jiang
,
J.
,
Yaghi
,
O. M.
, and
Wang
,
E. N.
,
2016
, “
Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks
,”
Sci. Rep.
,
6
(
1
), p.
19097
.10.1038/srep19097
317.
Rieth
,
A. J.
,
Yang
,
S.
,
Wang
,
E. N.
, and
Dincă
,
M.
,
2017
, “
Record Atmospheric Fresh Water Capture and Heat Transfer With a Material Operating at the Water Uptake Reversibility Limit
,”
ACS Cent. Sci.
,
3
(
6
), pp.
668
672
.10.1021/acscentsci.7b00186
318.
Kim
,
H.
,
Yang
,
S.
,
Rao
,
S. R.
,
Narayanan
,
S.
,
Kapustin
,
E. A.
,
Furukawa
,
H.
,
Umans
,
A. S.
,
Yaghi
,
O. M.
, and
Wang
,
E. N.
,
2017
, “
Water Harvesting From Air With Metal-Organic Frameworks Powered by Natural Sunlight
,”
Science
,
356
(
6336
), pp.
430
434
.10.1126/science.aam8743
319.
Kim
,
H.
,
Rao
,
S. R.
,
Kapustin
,
E. A.
,
Zhao
,
L.
,
Yang
,
S.
,
Yaghi
,
O. M.
, and
Wang
,
E. N.
,
2018
, “
Adsorption-Based Atmospheric Water Harvesting Device for Arid Climates
,”
Nat. Commun.
,
9
(
1
), p.
1191
.10.1038/s41467-018-03162-7
320.
Aly
,
N. H.
, and
El-Figi
,
A. K.
,
2003
, “
Thermal Performance of Seawater Desalination Systems
,”
Desalination
,
158
(
1–3
), pp.
127
142
.10.1016/S0011-9164(03)00443-0
321.
Ophir
,
A.
, and
Lokiec
,
F.
,
2005
, “
Advanced MED Process for Most Economical Sea Water Desalination
,”
Desalination
,
182
(
1–3
), pp.
187
198
.10.1016/j.desal.2005.02.026
322.
Rahimi
,
B.
,
Christ
,
A.
,
Regenauer-Lieb
,
K.
, and
Chua
,
H. T.
,
2014
, “
A Novel Process for Low Grade Heat Driven Desalination
,”
Desalination
,
351
, pp.
202
212
.10.1016/j.desal.2014.07.021
323.
Thu
,
K.
,
Kim
,
Y.-D.
,
Shahzad
,
M. W.
,
Saththasivam
,
J.
, and
Ng
,
K. C.
,
2015
, “
Performance Investigation of an Advanced Multi-Effect Adsorption Desalination (MEAD) Cycle
,”
Appl. Energy
,
159
, pp.
469
477
.10.1016/j.apenergy.2015.09.035
324.
Calise
,
F.
,
Dentice d'Accadia
,
M.
,
Macaluso
,
A.
,
Vanoli
,
L.
, and
Piacentino
,
A.
,
2016
, “
A Novel Solar-Geothermal Trigeneration System Integrating Water Desalination: Design, Dynamic Simulation and Economic Assessment
,”
Energy
,
115
, pp.
1533
1547
.10.1016/j.energy.2016.07.103
325.
Xue
,
Y.
,
Du
,
X.
,
Ge
,
Z.
, and
Yang
,
L.
,
2018
, “
Study on Multi-Effect Distillation of Seawater With Low-Grade Heat Utilization of Thermal Power Generating Unit
,”
Appl. Therm. Eng.
,
141
, pp.
589
599
.10.1016/j.applthermaleng.2018.05.129
326.
Parham
,
K.
,
Yari
,
M.
, and
Atikol
,
U.
,
2013
, “
Alternative Absorption Heat Transformer Configurations Integrated With Water Desalination System
,”
Desalination
,
328
, pp.
74
82
.10.1016/j.desal.2013.08.013
327.
Ali
,
E. S.
,
Askalany
,
A. A.
,
Harby
,
K.
,
Diab
,
M. R.
, and
Alsaman
,
A. S.
,
2018
, “
Adsorption Desalination-Cooling System Employing Copper Sulfate Driven by Low Grade Heat Sources
,”
Appl. Therm. Eng.
,
136
, pp.
169
176
.10.1016/j.applthermaleng.2018.03.014
328.
Hamawand
,
I.
,
Lewis
,
L.
,
Ghaffour
,
N.
, and
Bundschuh
,
J.
,
2017
, “
Desalination of Salty Water Using Vacuum Spray Dryer Driven by Solar Energy
,”
Desalination
,
404
, pp.
182
191
.10.1016/j.desal.2016.11.015
329.
Homaeigohar
,
S.
, and
Elbahri
,
M.
,
2017
, “
Graphene Membranes for Water Desalination
,”
NPG Asia Mater.
,
9
(
8
), pp.
e427
e427
.10.1038/am.2017.135
330.
EIA
, 2019, “
How Much Energy is Consumed in U.S. Residential and Commercial Buildings?
,” EIA, U.S. Energy Information Administration, Washington, DC, accessed July 15, 2019, https://www.eia.gov/tools/faqs/faq.php?id=86&t=1
331.
Ascione
,
F.
,
D'Agostino
,
D.
,
Marino
,
C.
, and
Minichiello
,
F.
,
2016
, “
Earth-to-Air Heat Exchanger for NZEB in Mediterranean Climate
,”
Renewable Energy
,
99
, pp.
553
563
.10.1016/j.renene.2016.07.025
332.
Bertone
,
E.
,
Sahin
,
O.
,
Stewart
,
R. A.
,
Zou
,
P.
,
Alam
,
M.
, and
Blair
,
E.
,
2016
, “
State-of-the-Art Review Revealing a Roadmap for Public Building Water and Energy Efficiency Retrofit Projects
,”
Int. J. Sustainable Built Environ.
,
5
(
2
), pp.
526
548
.10.1016/j.ijsbe.2016.09.004
333.
Calm
,
J. M.
,
2008
, “
The Next Generation of Refrigerants–Historical Review, Considerations, and Outlook
,”
Int. J. Refrig.
,
31
(
7
), pp.
1123
1133
.10.1016/j.ijrefrig.2008.01.013
334.
Brazeau
,
R. H.
, and
Edwards
,
M. A.
,
2013
, “
Water and Energy Savings From On-Demand and Hot Water Recirculating Systems
,”
J. Green Build.
,
8
(
1
), pp.
75
89
.10.3992/jgb.8.1.75
335.
Larson
,
D.
,
Lee
,
C.
,
Tellinghuisen
,
S.
, and
Keller
,
A.
,
2007
, “
California's Energy-Water Nexus: Water Use in Electricity Generation
,”
Southwest Hydrol.
,
6
(
5
), pp.
16
19
.http://www.wrsc.org/sites/default/files/californias_energy_-_water_nexus_0.pdf
336.
Elatar
,
A. F.
,
Nawaz
,
K.
,
Shen
,
B.
,
Baxter
,
V. D.
, and
Abdelaziz
,
O.
,
2017
, “
Characterization of Wrapped Coil Tank Water Heater During Charging/Discharging
,” Oak Ridge National Lab. (ORNL), Oak Ridge, TN.
337.
Erickson
,
D.
,
Anand
,
G.
,
Panchal
,
C.
, and
Mattingly
,
M.
,
2002
, “
Prototype Commercial Hot Water Gas Heat Pump (CHWGHP)-Design and Performance
,”
ASHRAE Trans.
,
108
(
1
), pp.
792
798
.https://search.proquest.com/docview/192555996
338.
Grant
,
P.
,
Burch
,
J.
, and
Krarti
,
M.
,
2011
, “
Behavior and Testing Performance of a Gas Tankless Water Heater
,”
ASME
Paper No. ES2011-54868.10.1115/ES2011-54868
339.
Lee
,
A. H.
, and
Jones
,
J. W.
,
1996
, “
Thermal Performance of a Residential Desuperheater/Water Heater System
,”
Energy Convers. Manage.
,
37
(
4
), pp.
389
397
.10.1016/0196-8904(95)00195-6
340.
Atmaca
,
A. U.
,
Erek
,
A.
, and
Altay
,
H. M.
,
2016
, “
Comparison of Two Numerical Approaches to the Domestic Hot Water Circuit in a Combi Boiler Appliance
,”
Energy Build.
,
127
, pp.
1043
1056
.10.1016/j.enbuild.2016.06.053
341.
Bahel
,
V.
,
Al-Ansari
,
J.
, and
Abdelrahman
,
M.
,
1985
, “
Preliminary Assessment of Heat Recovery Water Heating in Dhahran, Saudi Arabia
,”
J. Heat Recovery Syst.
,
5
(
1
), pp.
51
56
.10.1016/0198-7593(85)90121-3
342.
Der
,
J. P.
,
Kostiuk
,
L. W.
, and
McDonald
,
A. G.
,
2017
, “
Analysis of the Performance of a Tankless Water Heating Combo System: Space Heating Only Mode
,”
Energy Build.
,
137
, pp.
1
12
.10.1016/j.enbuild.2016.12.020
343.
Yang
,
J.
,
Chan
,
K.
, and
Wu
,
X.
,
2009
, “
Application of Water Mist Pre-Cooling on the Air-Cooled Chillers
,”
Eleventh International IBPSA Conference
, Glasgow, Scotland, July 27–30, pp.
27
30
.
344.
Saidur
,
R.
,
Hasanuzzaman
,
M.
,
Mahlia
,
T.
,
Rahim
,
N.
, and
Mohammed
,
H.
,
2011
, “
Chillers Energy Consumption, Energy Savings and Emission Analysis in an Institutional Buildings
,”
Energy
,
36
(
8
), pp.
5233
5238
.10.1016/j.energy.2011.06.027
345.
Lee
,
T.-S.
,
2010
, “
Second-Law Analysis to Improve the Energy Efficiency of Screw Liquid Chillers
,”
Entropy
,
12
(
3
), pp.
375
389
.10.3390/e12030375
346.
Ross
,
D.
, and
Cirtog
,
A.
,
2016
, “
Chiller Savings Using the Automatic Tube Cleaning System (ATCS)
,”
39th World Energy Engineering Congress
, Vol.
2
, Washington, DC, Sept. 21–23, pp.
1321
1326
.
347.
Lee
,
T.-S.
,
Wu
,
W.-C.
, and
Jiang
,
J.-C.
,
2012
, “
Improved Energy Performance of Air-Cooled Water Chillers With Innovative Condenser Coil Configurations—Part ΙΙ: Experimental Validation
,”
Int. J. Refrig.
,
35
(
8
), pp.
2212
2222
.10.1016/j.ijrefrig.2012.08.020
348.
Lee
,
T.-S.
,
Wu
,
W.-C.
, and
Wang
,
S.-K.
,
2012
, “
Improved Energy Performance of Air-Cooled Water Chillers With Innovative Condenser Coil Configurations—Part I: CFD Simulation
,”
Int. J. Refrig.
,
35
(
8
), pp.
2199
2211
.10.1016/j.ijrefrig.2012.08.021
349.
Lamnatou
,
C.
, and
Chemisana
,
D.
,
2013
, “
Solar Radiation Manipulations and Their Role in Greenhouse Claddings: Fresnel Lenses, NIR-and UV-Blocking Materials
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
271
287
.10.1016/j.rser.2012.09.041
350.
Chemisana
,
D.
,
Ibáñez
,
M.
, and
Barrau
,
J.
,
2009
, “
Comparison of Fresnel Concentrators for Building Integrated Photovoltaics
,”
Energy Convers. Manage.
,
50
(
4
), pp.
1079
1084
.10.1016/j.enconman.2008.12.002
351.
Ayagaki
,
N.
,
Ozaki
,
A.
,
Takaguchi
,
H.
,
Kuroki
,
H.
, and
Watanabe
,
T.
,
2007
, “
Prediction of Energy Efficiency and Thermal Environment of Residential Buildings Utilizing PEFC-CGS Combined Floor Heating System
,”
Building Simulation 2007, Beijing, China, Sept. 3–6, pp.
546
553
.
352.
Jiang
,
Y.
,
Liu
,
X.
,
Zhang
,
L.
, and
Zhang
,
T.
,
2015
, “
High Temperature Cooling and Low Temperature Heating in Buildings of EBC Annex 59
,”
Energy Procedia
,
78
, pp.
2433
2438
.10.1016/j.egypro.2015.11.222
353.
Gao
,
J.
,
Li
,
A.
,
Xu
,
X.
,
Gang
,
W.
, and
Yan
,
T.
,
2018
, “
Ground Heat Exchangers: Applications, Technology Integration and Potentials for Zero Energy Buildings
,”
Renewable Energy
,
128
, pp.
337
349
.10.1016/j.renene.2018.05.089
354.
Beausoleil-Morrison
,
I.
, and
Strachan
,
P.
,
1999
, “
On the Significance of Modeling Internal Surface Convection in Dynamic Whole-Building Simulation Programs
,”
ASHRAE Trans.
,
105
, p.
929
.https://search.proquest.com/docview/192589936
355.
Diaz
,
C. A.
, and
Osmond
,
P.
,
2017
, “
Influence of Rainfall on the Thermal and Energy Performance of a Low Rise Building in Diverse Locations of the Hot Humid Tropics
,”
Procedia Eng.
,
180
, pp.
393
402
.10.1016/j.proeng.2017.04.198
356.
Song
,
S.-Y.
,
Yeo
,
M.-S.
,
Koo
,
B.-K.
, and
Lee
,
S.-J.
,
2011
, “
Energy Efficiency Analysis of Internally and Externally Insulated Apartment Buildings
,”
J. Asian Archit. Build. Eng.
,
10
(
2
), pp.
453
459
.10.3130/jaabe.10.453
357.
Audenaert
,
A.
,
De Cleyn
,
S.
, and
Vankerckhove
,
B.
,
2008
, “
Economic Analysis of Passive Houses and Low-Energy Houses Compared With Standard Houses
,”
Energy Policy
,
36
(
1
), pp.
47
55
.10.1016/j.enpol.2007.09.022
358.
Badescu
,
V.
,
2007
, “
Economic Aspects of Using Ground Thermal Energy for Passive House Heating
,”
Renewable Energy
,
32
(
6
), pp.
895
903
.10.1016/j.renene.2006.04.006
359.
Badescu
,
V.
,
2007
, “
Simple and Accurate Model for the Ground Heat Exchanger of a Passive House
,”
Renewable Energy
,
32
(
5
), pp.
845
855
.10.1016/j.renene.2006.03.004
360.
Badescu
,
V.
, and
Sicre
,
B.
,
2003
, “
Renewable Energy for Passive House Heating—II: Model
,”
Energy Build.
,
35
(
11
), pp.
1085
1096
.10.1016/j.enbuild.2003.09.004
361.
Badescu
,
V.
, and
Sicre
,
B.
,
2003
, “
Renewable Energy for Passive House Heating—Part I: Building Description
,”
Energy Build.
,
35
(
11
), pp.
1077
1084
.10.1016/j.enbuild.2003.10.001
362.
Badescu
,
V.
, and
Staicovici
,
M. D.
,
2006
, “
Renewable Energy for Passive House Heating: Model of the Active Solar Heating System
,”
Energy Build.
,
38
(
2
), pp.
129
141
.10.1016/j.enbuild.2005.04.001
363.
Feist
,
W.
,
Schnieders
,
J.
,
Dorer
,
V.
, and
Haas
,
A.
,
2005
, “
Re-Inventing Air Heating: Convenient and Comfortable Within the Frame of the Passive House Concept
,”
Energy Build.
,
37
(
11
), pp.
1186
1203
.10.1016/j.enbuild.2005.06.020
364.
Flaga-Maryanczyk
,
A.
,
Schnotale
,
J.
,
Radon
,
J.
, and
Was
,
K.
,
2014
, “
Experimental Measurements and CFD Simulation of a Ground Source Heat Exchanger Operating at a Cold Climate for a Passive House Ventilation System
,”
Energy Build.
,
68
, pp.
562
570
.10.1016/j.enbuild.2013.09.008
365.
Mihai
,
C.
,
Bogdan
,
D.
, and
Daniel
,
J. I.
,
2011
, “
Thermal Energy Storage Using PCMs
,” Recent Advances in Fluid Mechanics and Heat and Mass Transfer: Proceedings of the 9th IASME/WSEAS International Conference on Fluid Mechanics & Aerodynamics (FMA '11), Proceedings of the 9th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment (HTE '11), Florence, Italy, Aug.
23
25
.
366.
Hasnain
,
S.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies—Part I: Heat Storage Materials and Techniques
,”
Energy Convers. Manage.
,
39
(
11
), pp.
1127
1138
.10.1016/S0196-8904(98)00025-9
367.
Alam
,
M.
,
Zou
,
P. X.
,
Sanjayan
,
J.
, and
Ramakrishnan
,
S.
,
2019
, “
Energy Saving Performance Assessment and Lessons Learned From the Operation of an Active Phase Change Materials System in a Multi-Storey Building in Melbourne
,”
Appl. Energy
,
238
, pp.
1582
1595
.10.1016/j.apenergy.2019.01.116
368.
Chandrasekaran
,
P.
,
Cheralathan
,
M.
,
Kumaresan
,
V.
, and
Velraj
,
R.
,
2014
, “
Enhanced Heat Transfer Characteristics of Water Based Copper Oxide Nanofluid PCM (Phase Change Material) in a Spherical Capsule During Solidification for Energy Efficient Cool Thermal Storage System
,”
Energy
,
72
, pp.
636
642
.10.1016/j.energy.2014.05.089
369.
Parameshwaran
,
R.
, and
Kalaiselvam
,
S.
,
2014
, “
Energy Conservative Air Conditioning System Using Silver Nano-Based PCM Thermal Storage for Modern Buildings
,”
Energy Build.
,
69
, pp.
202
212
.10.1016/j.enbuild.2013.09.052
370.
Diriken
,
J.
,
Van Bael
,
J.
,
Leemans
,
F.
,
Salenbien
,
R.
,
Baelmans
,
M.
, and
Cabeza
,
L. F.
, “
Comparison of a Single Stage and a Multi Stage Latent Heat Storage for Domestic Hot Water Delivery
,”
11th IIR Conference on Phase Change Materials and Slurries for Refrigeration and Air Conditioning
, Karlsruhe, Germany, May 18–20, pp.
107
111
.
371.
Wang
,
M.
, and
Kusumoto
,
N.
,
2001
, “
Ice Slurry Based Thermal Storage in Multifunctional Buildings
,”
Heat Mass Transfer
,
37
(
6
), pp.
597
604
.10.1007/PL00005891
372.
Dufour
,
T.
,
Oignet
,
J.
,
Hoang
,
H.-M.
,
Leducq
,
D.
,
Delahaye
,
A.
,
Fournaison
,
L.
, and
Pons
,
M.
,
2016
, “
Dynamic Modelling of Secondary Refrigeration Loop With CO2 Hydrate Slurry
,”
IIR Conference on Phase Change Materials and Slurries for Refrigeration and Air Conditioning
, Karlsruhe, Germany, May 18–20, pp.
181
188
.
373.
Xie
,
J.
, and
Yuan
,
C.
,
2015
, “
Numerical Study of Factorial Impact of Thin Layer Ring on Improving Thermal Performance of Ice Thermal Storage System
,”
ASME
Paper No. MSEC2015-9398. 10.1115/MSEC2015-9398
374.
Colangelo
,
G.
,
Milanese
,
M.
, and
de Risi
,
A.
,
2019
, “
Energy Simulation of a Nanofluid Solar Cooling System in Italy
,”
Proceedings of the Institution of Civil Engineers-Engineering Sustainability
,172(1), pp.
32
39
.10.1680/jensu.16.00027
375.
Fella
,
C.
,
2017
, “
Performance Analysis of Solar Powered Air Conditioning System Using Absorption Refrigeration Cycle and High Efficiency Cooling Technologies Installed in Colombia
,”
MSc thesis
, Universidad Pontificia Bolivariana.https://www.politesi.polimi.it/bitstream/10589/135351/5/PERFORMANCE%20ANALYSIS%20OF%20SOLAR-POWERED%20AIR-CONDITIONING%20SYSTEM.pdf
376.
Qu
,
M.
,
Archer
,
D. H.
, and
Yin
,
H.
,
2008
, “
Experiment Based Performance Analysis of a Solar Absorption Cooling and Heating System in Carnegie Mellon University
,”
ASME
Paper No. ES2008-54200. 10.1115/ES2008-54200
377.
Qu
,
M.
,
Archer
,
D. H.
,
Yin
,
H.
, and
Masson
,
S.
,
2007
, “
Solar Absorption Cooling and Heating System in the Intelligent Workplace
,”
ASME
Paper No. ES2007-36047. 10.1115/ES2007-36047
378.
Kren
,
C.
,
Schweigler
,
C.
, and
Ziegler
,
F.
,
2006
, “
Heat Transfer Characteristics in Flue Gas Fired Regenerators of Water/Lithium Bromide Absorption Chillers
,”
ASME
Paper No. IMECE2006-15834.
379.
Grisel
,
R. J.
,
Smeding
,
S. F.
, and
De Boer
,
R.
,
2010
, “
Waste Heat Driven Silica Gel/Water Adsorption Cooling in Trigeneration
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
1039
1046
.10.1016/j.applthermaleng.2010.01.020
380.
Meunier
,
F.
, and
Zanife
,
T.
,
1990
, “
Performance Monitoring of an Adsorption Heat Pump; Model Development and Simulation Studies
,”
ASHRAE Trans.
,
96
(
pt. 2
), Paper No. CONF-9006117.
381.
Saha
,
B. B.
,
Koyama
,
S.
,
Lee
,
J. B.
,
Kuwahara
,
K.
,
Alam
,
K.
,
Hamamoto
,
Y.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
,
2003
, “
Performance Evaluation of a Low-Temperature Waste Heat Driven Multi-Bed Adsorption Chiller
,”
Int. J. Multiphase Flow
,
29
(
8
), pp.
1249
1263
.10.1016/S0301-9322(03)00103-4
382.
Saha
,
B. B.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
,
2001
, “
Solar/Waste Heat Driven Two-Stage Adsorption Chiller: The Prototype
,”
Renewable Energy
,
23
(
1
), pp.
93
101
.10.1016/S0960-1481(00)00107-5
383.
Islam
,
M.
,
Alan
,
S.
, and
Chua
,
K.
,
2018
, “
Studying the Heat and Mass Transfer Process of Liquid Desiccant for Dehumidification and Cooling
,”
Appl. Energy
,
221
, pp.
334
347
.10.1016/j.apenergy.2018.03.167
384.
El-Dessouky
,
H.
,
Ettouney
,
H.
, and
Al-Zeefari
,
A.
,
2004
, “
Performance Analysis of Two-Stage Evaporative Coolers
,”
Chem. Eng. J.
,
102
(
3
), pp.
255
266
.10.1016/j.cej.2004.01.036
385.
Wang
,
T.
,
Sheng
,
C.
, and
Nnanna
,
A. A.
,
2014
, “
Experimental Investigation of Air Conditioning System Using Evaporative Cooling Condenser
,”
Energy Build.
,
81
, pp.
435
443
.10.1016/j.enbuild.2014.06.047
386.
Jiang
,
Y.
, and
Xie
,
X.
,
2010
, “
Theoretical and Testing Performance of an Innovative Indirect Evaporative Chiller
,”
Sol. Energy
,
84
(
12
), pp.
2041
2055
.10.1016/j.solener.2010.09.012
387.
Wan
,
Y.
,
Lin
,
J.
,
Chua
,
K. J.
, and
Ren
,
C.
,
2018
, “
A New Method for Prediction and Analysis of Heat and Mass Transfer in the Counter-Flow Dew Point Evaporative Cooler Under Diverse Climatic, Operating and Geometric Conditions
,”
Int. J. Heat Mass Transfer
,
127
, pp.
1147
1160
.10.1016/j.ijheatmasstransfer.2018.07.142
388.
Jradi
,
M.
, and
Riffat
,
S.
,
2014
, “
Experimental and Numerical Investigation of a Dew-Point Cooling System for Thermal Comfort in Buildings
,”
Appl. Energy
,
132
, pp.
524
535
.10.1016/j.apenergy.2014.07.040
389.
Vasile
,
C.
,
Engel
,
T.
,
Risser
,
M.
, and
Muller
,
C.
,
2008
, “
Energy Efficient and Environmental Safe Magnetic Cooling System
,”
Proceedings of the Seventh International Conference
, Vilnius, Lithuania, May 22–23, pp.
22
23
.
390.
Russek
,
S. L.
, and
Zimm
,
C. B.
,
2006
, “
Potential for Cost Effective Magnetocaloric Air Conditioning Systems
,”
Int. J. Refrig.
,
29
(
8
), pp.
1366
1373
.10.1016/j.ijrefrig.2006.07.019
391.
Chan
,
K.
, and
Yu
,
F.
,
2004
, “
Optimum Setpoint of Condensing Temperature for Air-Cooled Chillers
,”
HVACR Res.
,
10
(
2
), pp.
113
127
.10.1080/10789669.2004.10391095
392.
Yu
,
F.
, and
Chan
,
K.
,
2008
, “
Optimization of Water-Cooled Chiller System With Load-Based Speed Control
,”
Appl. Energy
,
85
(
10
), pp.
931
950
.10.1016/j.apenergy.2008.02.008
393.
McGowan
,
M. K.
,
2017
, “
Balancing the Scales With the Water-Energy Nexus
,”
ASHRAE J.
, pp.
40
42
.https://search.proquest.com/docview/1940121660
394.
Van Ooteghem
,
R. J.
,
2010
, “
Optimal Control Design for a Solar Greenhouse
,”
IFAC Proc. Volumes
,
43
(
26
), pp.
304
309
.10.3182/20101206-3-JP-3009.00054
395.
Kim
,
M.
, and
Kaviany
,
M.
,
2017
, “
Multi-Artery Heat-Pipe Spreader: Monolayer-Wick Receding Meniscus Transitions and Optimal Performance
,”
Int. J. Heat Mass Transfer
,
112
, pp.
343
353
.10.1016/j.ijheatmasstransfer.2017.04.131
396.
Lombera
,
J.-T. S.-J.
, and
Rojo
,
J. C.
,
2010
, “
Industrial Building Design Stage Based on a System Approach to Their Environmental Sustainability
,”
Constr. Build. Mater.
,
24
(
4
), pp.
438
447
.10.1016/j.conbuildmat.2009.10.019
397.
Cheng
,
C.-L.
,
2002
, “
Study of the Inter-Relationship Between Water Use and Energy Conservation for a Building
,”
Energy Build.
,
34
(
3
), pp.
261
266
.10.1016/S0378-7788(01)00097-4
398.
Kamal
,
M. A.
,
2012
, “
An Overview of Passive Cooling Techniques in Buildings: Design Concepts and Architectural Interventions
,”
Acta Technica Napocensis: Civ. Eng. Archit.
,
55
(
1
), pp.
84
97
.https://constructii.utcluj.ro/ActaCivilEng/download/atn/ATN2012(1)_8.pdf
399.
Webb
,
A. L.
,
2017
, “
Energy Retrofits in Historic and Traditional Buildings: A Review of Problems and Methods
,”
Renewable Sustainable Energy Rev.
,
77
, pp.
748
759
.10.1016/j.rser.2017.01.145
400.
Ruparathna
,
R.
,
Hewage
,
K.
, and
Sadiq
,
R.
,
2016
, “
Improving the Energy Efficiency of the Existing Building Stock: A Critical Review of Commercial and Institutional Buildings
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
1032
1045
.10.1016/j.rser.2015.09.084
401.
ASHRAE
,
2019
, “
ANSI/ASHRAE Standard 15-2019, Safety Standard for Refrigeration Systems
,” ASHRAE, Atlanta, GA, Standard No.
15
2019
.
402.
Liu
,
T.
, and
Kim
,