Abstract

An octet-truss structure is considered as one of promising candidates for modern heat exchanger structures due to its light weight with stress supporting structure and high thermal performance as a multifunctional heat exchanger. A design strategy has been established to control the anisotropy of its effective thermal conductivity tensor by deforming the structure according to its specific heat transfer application. The solution surface of flat triangle was constructed in the space with three coordinate axes being the principal components of the effective thermal conductivity, using the analytical expressions derived for metal frame structures of low solidity. The design parameters of two structural angles can readily be found from this analytical solution surface with equal angle lines to transfer heat in a particular direction, or to block heat in any other direction. Full three-dimensional (3D) numerical computations were also conducted to verify the validity of the present analytical strategy.

References

1.
Wang
,
W.
,
Yang
,
X.
,
Han
,
B.
,
Zhang
,
Q.
,
Wang
,
X.
, and
Lu
,
T.
,
2016
, “
Analytical Design of Effective Thermal Conductivity for Fluid-Saturated Prismatic Cellular Metal Honeycombs
,”
Theor. Appl. Mech. Lett.
,
6
(
2
), pp.
69
75
.10.1016/j.taml.2016.01.003
2.
Zhang
,
Q.
,
Yang
,
X.
,
Li
,
P.
,
Huang
,
G.
,
Feng
,
S.
,
Shen
,
C.
,
Han
,
B.
,
Zhang
,
X.
,
Jin
,
F.
,
Xu
,
F.
, and
Lu
,
T.
,
2015
, “
Bioinspired Engineering of Honeycomb Structure — Using Nature to Inspire Human Innovation
,”
Prog. Mater. Sci.
,
74
, pp.
332
400
.10.1016/j.pmatsci.2015.05.001
3.
Evans
,
A. G.
,
Hutchinson
,
J. W.
,
Fleck
,
N. A.
,
Ashby
,
M. F.
, and
Wadley
,
H. N. G.
,
2001
, “
The Topological Design of Multifunctional Cellular Metals
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
309
327
.10.1016/S0079-6425(00)00016-5
4.
Wadley
,
H. N. G.
, and
Queheillalt
,
D. T.
,
2007
, “
Thermal Applications of Cellular Lattice Structures
,”
Mater. Sci. Forum
,
539–543
, pp.
242
247
.10.4028/www.scientific.net/MSF.539-543.242
5.
Lu
,
T. J.
,
Xu
,
F.
, and
Wen
,
T.
,
2013
,
Thermo-Fluid Behavior of Periodic Cellular Metals
,
Springer Press
,
Beijing, China
.
6.
Tian
,
J.
,
Kim
,
T.
,
Lu
,
T. J.
,
Hodson
,
H. P.
,
Queheillalt
,
D. T.
,
Sypeck
,
D. J.
, and
Wadley
,
H. N. G.
,
2004
, “
The Effects of Topology Upon Fluid-Flow and Heat-Transfer Within Cellular Copper Structures
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3171
3186
.10.1016/j.ijheatmasstransfer.2004.02.010
7.
Krishnan
,
S.
,
Hernon
,
D.
,
Hodes
,
M.
,
Mullins
,
J.
, and
Lyons
,
A. M.
,
2012
, “
Design of Complex Structured Monolithic Heat Sinks for Enhanced Air Cooling
,”
IEEE Trans. Compon., Packing Manuf. Technol.
,
2
(
2
), pp.
266
276
.10.1109/TCPMT.2011.2175448
8.
Krishnan
,
S. G.
,
Bolda
,
K. K.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2014
, “
Numerical Investigation of Fluid Flow and Heat Transfer in Periodic Porous Lattice-Frame Materials
,”
Proceedings of 15th International Heat Transfer Conference
,
Kyoto, Japan
, Aug. 10–15, p.
IHTC15-8706
. http://www.ihtcdigitallibrary.com/conferences/ihtc15,05f1c2a43429b4fb,7247e73761fa8e05.html
9.
Kim
,
T.
,
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Convective Heat Dissipation With Lattice-Frame Materials
,”
Mech. Mater.
,
36
(
8
), pp.
767
780
.10.1016/j.mechmat.2003.07.001
10.
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2004
, “
Fluid-Flow and Endwall Heat-Transfer Characteristics of an Ultralight Lattice-Frame Material
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1129
1140
.10.1016/j.ijheatmasstransfer.2003.10.012
11.
Yan
,
H. B.
,
Zhang
,
Q. C.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2015
, “
A Lightweight X-Type Metallic Lattice in Single-Phase Forced Convection
,”
Int. J. Heat Mass Transfer
,
83
, pp.
273
283
.10.1016/j.ijheatmasstransfer.2014.11.061
12.
Ekade
,
P.
, and
Krishnan
,
S.
,
2019
, “
Fluid Flow and Heat Transfer Characteristics of Octet Truss Lattice Geometry
,”
Int. J. Therm. Sci.
,
137
, pp.
253
261
.10.1016/j.ijthermalsci.2018.11.031
13.
Dong
,
L.
,
Deshpande
,
V. S.
, and
Wadley
,
H.
,
2015
, “
Mechanical Response of Ti–6Al–4V Octet-Truss Lattice Structures
,”
Int. J. Solid Struct.
,
60–61
, pp.
107
124
.10.1016/j.ijsolstr.2015.02.020
14.
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
Effective Properties of the Octet-Truss Lattice Material
,”
J. Mech. Phys. Solid.
,
49
(
8
), pp.
1747
1769
.10.1016/S0022-5096(01)00010-2
15.
Qu
,
Z. G.
,
Wang
,
T. S.
,
Tao
,
W. Q.
, and
Lu
,
T. J.
,
2012
, “
A Theoretical Octet-Truss Lattice Unit Cell Model for Effective Thermal Conductivity of Consolidated Porous Materials Saturated With Fluid
,”
Heat Mass Transfer
,
48
(
8
), pp.
1385
1395
.10.1007/s00231-012-0985-y
16.
Bai
,
X.
,
Hasan
,
C.
,
Mobedi
,
M.
, and
Nakayama
,
A.
,
2018
, “
A General Expression for the Stagnant Thermal Conductivity of Stochastic and Periodic Structures
,”
ASME J. Heat Transfer
,
140
(
5
), p.
052001
.10.1115/1.4038449
17.
Xu
,
S.
,
Shen
,
J.
,
Zhou
,
S.
,
Huang
,
X.
, and
Xie
,
Y. M.
,
2016
, “
Design of Lattice Structures With Controlled Anisotropy
,”
Mater. Des.
,
93
, pp.
443
447
.10.1016/j.matdes.2016.01.007
18.
Bai
,
X.
, and
Nakayama
,
A.
,
2019
, “
An Analytical and Numerical Estimation of the Effective Thermal Conductivity of Complex Metal Frame Core Structures
,”
ASME J. Heat Transfer
,
141
(
2
), p.
024504
.10.1115/1.4041957
19.
Bai
,
X.
, and
Nakayama
,
A.
,
2019
, “
Quick Estimate of Effective Thermal Conductivity for Fluid-Saturated Metal Frame and Prismatic Cellular Structures
,”
Appl. Therm. Eng.
,
160
, p.
114011
.10.1016/j.applthermaleng.2019.114011
20.
Bai
,
X.
,
2019
, “
A Theoretical and Experimental Study of Charged Ion Transport in Electrodialysis
,” Ph.D. thesis,
Shizuoka University
,
Shizuoka, Japan
.
21.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Sano
,
Y.
,
2007
, “
Concept of Equivalent Diameter for Heat and Fluid Flow in Porous Media
,”
AIChE J.
,
53
(
3
), pp.
732
736
.10.1002/aic.11092
You do not currently have access to this content.