Abstract

In this investigation, we explore the profound impact of adiabatic partitions on heat transport within a square Rayleigh-Bénard (RB) convection enclosure characterized by surface roughness on the lower hot and upper cold plates. The surface irregularities take the form of a rectangular base and a triangular apex. Our study employs two-dimensional direct numerical simulations spanning the Rayleigh number (Ra) range of 106108 and a Prandtl number (Pr) of 1. Adiabatic partitions, strategically positioned between successive roughness, serve as the focal point of our exploration. Remarkably, our findings reveal a substantial enhancement in heat transport with the introduction of a partition board between consecutive roughness elements. As we escalate the number of partitions from one to four, the heat flux experiences a notable augmentation, reaching 2.3 times that of the classical square RB configuration. This enhancement is attributed to the breakdown of large-scale rolls into multiple rolls, a phenomenon intensified by the increased partition height. Further intriguing observations unfold as we investigate the interplay of surface roughness and partitions. Configurations featuring roughness with partitions exhibit an impressive 2.7 times heat flux enhancement compared to the classical square RB setup. The complex interplay of heat transport improvement is closely connected to optimizing the distance between the conduction plate and the partition. Through meticulous analysis, we identify that the optimal gap facilitates heightened local velocity, effectively thinning the thermal boundary layer and consequently augmenting the overall heat flux. In essence, our study sheds light on the synergistic effects of adiabatic partitions and surface roughness in the context of RB convection. The observed enhancements in heat transport underscore the potential for tailored design strategies involving partitions and surface modifications to optimize thermal performance in diverse applications.

References

1.
Inagaki
,
A.
, and
Kanda
,
M.
,
2008
, “
Turbulent Flow Similarity Over an Array of Cubes in Near-Neutrally Stratified Atmospheric Flow
,”
J. Fluid Mech.
,
615
, pp.
101
120
.10.1017/S0022112008003765
2.
Mann
,
J.
,
1994
, “
The Spatial Structure of Neutral Atmospheric Surface-Layer Turbulence
,”
J. Fluid Mech.
,
273
, pp.
141
168
.10.1017/S0022112094001886
3.
Pedlosky
,
J.
, and
Greenspan
,
H. P.
,
1967
, “
A Simple Laboratory Model for the Oceanic Circulation
,”
J. Fluid Mech.
,
27
(
2
), pp.
291
304
.10.1017/S0022112067000321
4.
Pedlosky
,
J.
,
1968
, “
An Overlooked Aspect of the Wind-Driven Oceanic Circulation
,”
J. Fluid Mech.
,
32
(
4
), pp.
809
821
.10.1017/S0022112068001059
5.
Stehlík
,
P.
, and
Wadekar
,
V. V.
,
2002
, “
Different Strategies to Improve Industrial Heat Exchange
,”
Heat Transfer Eng.
,
23
(
6
), pp.
36
48
.10.1080/01457630290098673
6.
Koca
,
A.
,
Çalışkan
,
C. I.
,
Koç
,
E.
, and
Akbal
,
Ö.
,
2023
, “
A Novel 3D Printed Air-Cooled Fuel Cooler Heat Exchanger for Aviation Industry
,”
Heat Transfer Eng.
,
44
(
15
), pp.
1350
1371
.10.1080/01457632.2022.2134077
7.
Maghrabie
,
H. M.
,
Olabi
,
A. G.
,
Sayed
,
E. T.
,
Wilberforce
,
T.
,
Elsaid
,
K.
,
Doranehgard
,
M. H.
, and
Abdelkareem
,
M. A.
,
2023
, “
Microchannel Heat Sinks With Nanofluids for Cooling Electronic Components: Performance Enhancement, Challenges, and Limitations
,”
Therm. Sci. Eng. Prog.
,
37
, p.
101608
.10.1016/j.tsep.2022.101608
8.
Ahlers
,
G.
,
Grossmann
,
S.
, and
Lohse
,
D.
,
2009
, “
Heat Transfer and Large Scale Dynamics in Turbulent Rayleigh–Bénard Convection
,”
Rev. Mod. Phys.
,
81
(
2
), pp.
503
537
.10.1103/RevModPhys.81.503
9.
Grossmann
,
S.
, and
Lohse
,
D.
,
2000
, “
Scaling in Thermal Convection: A Unifying Theory
,”
J. Fluid Mech.
,
407
, pp.
27
56
.10.1017/S0022112099007545
10.
Grossmann
,
S.
, and
Lohse
,
D.
,
2001
, “
Thermal Convection for Large Prandtl Numbers
,”
Phys. Rev. Lett.
,
86
(
15
), pp.
3316
3319
.10.1103/PhysRevLett.86.3316
11.
Du
,
Y.-B.
, and
Tong
,
P.
,
1998
, “
Enhanced Heat Transport in Turbulent Convection Over a Rough Surface
,”
Phys. Rev. Lett.
,
81
(
5
), pp.
987
990
.10.1103/PhysRevLett.81.987
12.
Lam
,
S.
,
Shang
,
X. D.
,
Zhou
,
S. Q.
, and
Xia
,
K. Q.
,
2002
, “
Prandtl Number Dependence of the Viscous Boundary Layer and the Reynolds Numbers in Rayleigh-Bénard Convection
,”
Phys. Rev. E
,
65
(
6
), p.
066306
.10.1103/PhysRevE.65.066306
13.
Li
,
X. M.
,
He
,
J. D.
,
Tian
,
Y.
,
Hao
,
P.
, and
Huang
,
S. D.
,
2021
, “
Effects of Prandtl Number in Quasi-Two-Dimensional Rayleigh–Bénard Convection
,”
J. Fluid Mech.
,
915
, p.
A60
.10.1017/jfm.2021.21
14.
Liu
,
H. R.
,
Chong
,
K. L.
,
Ng
,
C. S.
,
Verzicco
,
R.
, and
Lohse
,
D.
,
2022
, “
Enhancing Heat Transport in Multiphase Rayleigh– Bénard Turbulence by Changing the Plate– Liquid Contact Angles
,”
J. Fluid Mech.
,
933
, p.
R1
.10.1017/jfm.2021.1068
15.
Liu
,
H. R.
,
Chong
,
K. L.
,
Yang
,
R.
,
Verzicco
,
R.
, and
Lohse
,
D.
,
2022
, “
Heat Transfer in Turbulent Rayleigh– Bénard Convection Through Two Immiscible Fluid Layers
,”
J. Fluid Mech.
,
938
, p.
A31
.10.1017/jfm.2022.181
16.
Bao
,
Y.
,
Chen
,
J.
,
Liu
,
B.-F.
,
She
,
Z.-S.
,
Zhang
,
J.
, and
Zhou
,
Q.
,
2015
, “
Enhanced Heat Transport in Partitioned Thermal Convection
,”
J. Fluid Mech.
,
784
, p.
R5
.10.1017/jfm.2015.610
17.
Chen
,
J.
,
Bao
,
Y.
,
Yin
,
Z. X.
, and
She
,
Z. S.
,
2017
, “
Theoretical and Numerical Study of Enhanced Heat Transfer in Partitioned Thermal Convection
,”
Int. J. Heat Mass Transfer
,
115
, pp.
556
569
.10.1016/j.ijheatmasstransfer.2017.07.008
18.
van der Poel
,
E. P.
,
Stevens
,
R. J. A. M.
,
Sugiyama
,
K.
, and
Lohse
,
D.
,
2012
, “
Flow States in Two-Dimensional Rayleigh- Bénard Convection as a Function of Aspect-Ratio and Rayleigh Number
,”
Phys. Fluids
,
24
, p.
085104
.10.1063/1.4744988
19.
Ching
,
E. S. C.
, and
Tam
,
W. S.
,
2006
, “
Aspect-Ratio Dependence of Heat Transport by Turbulent Rayleigh- Bénard Convection
,”
J. Turbul.
,
7
, p.
N72
.10.1080/14685240601042414
20.
Du
,
Y. B.
, and
Tong
,
P.
,
2000
, “
Turbulent Thermal Convection in a Cell With Ordered Rough Boundaries
,”
J. Fluid Mech.
,
407
, pp.
57
84
.10.1017/S0022112099007624
21.
Zhang
,
Y. Z.
,
Sun
,
C.
,
Bao
,
Y.
, and
Zhou
,
Q.
,
2018
, “
How Surface Roughness Reduces Heat Transport for Small Roughness Heights in Turbulent Rayleigh-Bénard Convection
,”
J. Fluid Mech.
,
836
, p.
R2
.10.1017/jfm.2017.786
22.
Wagner
,
S.
, and
Shishkina
,
O.
,
2015
, “
Heat Flux Enhancement by Regular Surface Roughness in Turbulent Thermal Convection
,”
J. Fluid Mech.
,
763
, pp.
109
135
.10.1017/jfm.2014.665
23.
Emran
,
M. S.
, and
Shishkina
,
O.
,
2020
, “
Natural Convection in Cylindrical Containers With Isothermal Ring-Shaped Obstacles
,”
J. Fluid Mech.
,
882
, p.
A3
.10.1017/jfm.2019.797
24.
Liu
,
S.
, and
Huisman
,
S. G.
,
2020
, “
Heat Transfer Enhancement in Rayleigh-Bénard Convection Using a Single Passive Barrier
,”
Phys. Rev. Fluids
,
5
(
12
), p.
123502
.10.1103/PhysRevFluids.5.123502
25.
Kar
,
P. K.
,
Chetan
,
U.
,
Kumar
,
A.
,
Das
,
P. K.
, and
Lakkaraju
,
R.
,
2023
, “
Heat Transport Enhancement and Flow Transitions in Partitioned Thermal Convection
,”
Phys. Rev. Fluids
,
8
(
4
), p.
043501
.10.1103/PhysRevFluids.8.043501
26.
Kar
,
P. K.
,
Chetan
,
U.
,
Mahato
,
J.
,
Sahu
,
T. L.
,
Das
,
P. K.
, and
Lakkaraju
,
R.
,
2022
, “
Heat Flux Enhancement by Regular Surface Protrusion in Partitioned Thermal Convection
,”
Phys. Fluids
,
34
, p.
127105
.10.1063/5.0123088
27.
Zwirner
,
L.
,
Tilgner
,
A.
, and
Shishkina
,
O.
,
2020
, “
Elliptical Instability and Multiple-Roll Flow Modes of the Large-Scale Circulation in Confined Turbulent Rayleigh- Bénard Convection
,”
Phys. Rev. Lett.
,
125
(
5
), p.
054502
.10.1103/PhysRevLett.125.054502
28.
Jasak
,
H.
,
Jemcov
,
A.
, and
Tukovic
,
Z.
,
2007
, “
Openfoam: A C++ Library for Complex Physics Simulations
,”
International Workshop on Coupled Methods in Numerical Dynamics
,
Dubrovnik, Croatia
, Sept. 19–21, pp.
1
20
.https://csabai.web.elte.hu/http/simulationLab/jasakEtAlOpenFoam.pdf
29.
Zhang
,
Y.
,
Huang
,
Y.-X.
,
Jiang
,
N.
,
Liu
,
Y.-U.
,
Lu
,
Z.-M.
,
Qiu
,
X.
, and
Zhou
,
Q.
,
2017
, “
Statistics of Velocity and Temperature Fluctuations in Two-Dimensional Rayleigh-Bénard Convection
,”
Phys. Rev. E
,
96
(
2
), p.
023105
.10.1103/PhysRevE.96.023105
30.
Pandey
,
A.
,
Kumar
,
A.
,
Chatterjee
,
A. G.
, and
Verma
,
M. K.
,
2016
, “
Dynamics of Large-Scale Quantities in Rayleigh- Bénard Convection
,”
Phys. Rev. E
,
94
(
5
), p.
053106
.10.1103/PhysRevE.94.053106
31.
Pandey
,
A.
, and
Verma
,
M. K.
,
2016
, “
Scaling of Large-Scale Quantities in Rayleigh- Bénard Convection
,”
Phys. Fluids
,
28
, p.
095105
.10.1063/1.4962307
32.
Kar
,
P. K.
,
Kumar
,
Y. N.
,
Das
,
P. K.
, and
Lakkaraju
,
R.
,
2020
, “
Thermal Convection in Octagonal-Shaped Enclosures
,”
Phys. Rev. Fluids
,
5
(
10
), p.
103501
.10.1103/PhysRevFluids.5.103501
33.
Nandukumar
,
Y.
,
Chakraborty
,
S.
,
Verma
,
M. K.
, and
Lakkaraju
,
R.
,
2019
, “
On Heat Transport and Energy Partition in Thermal Convection With Mixed Boundary Conditions
,”
Phys. Fluids
,
31
, p.
066601
.10.1063/1.5095242
34.
Zhu
,
X.
,
Stevens
,
R. J. A. M.
,
Verzicco
,
R.
, and
Lohse
,
D.
,
2017
, “
Roughness-Facilitated Local 1/2 Scaling Does Not Imply the Onset of the Ultimate Regime of Thermal Convection
,”
Phys. Rev. Lett.
,
119
(
15
), p.
154501
.10.1103/PhysRevLett.119.154501
35.
Lee
,
H.
, and
Awbi
,
H. B.
,
2004
, “
Effect of Internal Partitioning on Room Air Quality With Mixing Ventilation—Statistical Analysis
,”
Renewable Energy
,
29
, pp.
1721
1732
.10.1016/j.renene.2003.12.023
36.
Na
,
X.
,
Kang
,
H.
,
Wang
,
T.
, and
Wang
,
Y.
,
2018
, “
Reverselay-Bénard Air Flow for Li-Ion Battery Thermal Management
,”
Appl. Therm. Eng.
,
143
, pp.
257
262
.10.1016/j.applthermaleng.2018.07.080
37.
Chandra
,
M.
, and
Verma
,
M. K.
,
2013
, “
Flow Reversals in Turbulent Convection Via Vortex Reconnections
,”
Phys. Rev. Lett.
,
110
(
11
), p.
114503
.10.1103/PhysRevLett.110.114503
38.
Verma
,
M. K.
,
Ambhire
,
S. C.
, and
Pandey
,
A.
,
2015
, “
Flow Reversals in Turbulent Convection With Free-Slip Walls
,”
Phys. Fluids
,
27
, p.
047102
.10.1063/1.4918590
39.
Chandra
,
M.
, and
Verma
,
M. K.
,
2011
, “
Dynamics and Symmetries of Flow Reversals in Turbulent Convection
,”
Phys. Rev. E
,
83
(
6
), p.
067303
.10.1103/PhysRevE.83.067303
40.
Ciliberto
,
S.
, and
Laroche
,
C.
,
1999
, “
Random Roughness of Boundary Increases the Turbulent Convection Scaling Exponent
,”
Phys. Rev. Lett.
,
82
(
20
), pp.
3998
4001
.10.1103/PhysRevLett.82.3998
41.
Roche
,
P.-E.
,
Castaing
,
B.
,
Chabaud
,
B.
, and
Hébral
,
B.
,
2001
, “
Observation of the 1/2 Power Law in Rayleigh-Bénard Convection
,”
Phys. Rev. E
,
63
(
4
), p.
045303
.10.1103/PhysRevE.63.045303
42.
Toppaladoddi
,
S.
,
Succi
,
S.
, and
Wettlaufer
,
J. S.
,
2017
, “
Roughness as a Route to the Ultimate Regime of Thermal Convection
,”
Phys. Rev. Lett.
,
118
(
7
), p.
074503
.10.1103/PhysRevLett.118.074503
43.
Xie
,
Y.-C.
, and
Xia
,
K.-Q.
,
2017
, “
Turbulent Thermal Convection Over Rough Plates With Varying Roughness Geometries
,”
J. Fluid Mech.
,
825
, pp.
573
599
.10.1017/jfm.2017.397
44.
Shen
,
Y.
,
Tong
,
P.
, and
Xia
,
K. Q.
,
1996
, “
Turbulent Convection Over Rough Surfaces
,”
Phys. Rev. Lett.
,
76
(
6
), pp.
908
911
.10.1103/PhysRevLett.76.908
45.
Shishkina
,
O.
, and
Wagner
,
C.
,
2011
, “
Modelling the Influence of Wall Roughness on Heat Transfer in Thermal Convection
,”
J. Fluid Mech.
,
686
, pp.
568
582
.10.1017/jfm.2011.348
You do not currently have access to this content.