Abstract

This study develops a numerical simulation to assess transient constriction resistance in various semi-infinite flux channel geometries, including circle on circle, triangle, square, pentagon, and hexagon, which are derived from various heat source arrangements in a large domain. Using both isothermal and isoflux circular heat sources in polygonal flux channels, and employing a finite volume method, the study evaluates transient constriction resistance. The research confirms that for different geometries, similar nondimensionalized constriction resistance results are obtained, particularly when using the square root of the source area as the characteristic length and the square root of the constriction area ratio. The study reveals that flux tube shape has a minimal impact on thermal spreading resistance, with the circle-on-triangle configuration displaying the largest deviation from a simple circle-on-circle model. These insights advance our understanding of thermal spreading resistance in polygonal flux channels and their applications in thermal engineering, especially in contact heat transfer problems.

References

1.
Fried
,
E.
,
1964
, “
Study of Interface Thermal Contact Conductance
,”
General Electric Company, Spacecraft Department
, Philadelphia, PA.
2.
Lam
,
L. S.
,
Sultana
,
K. R.
,
Pope
,
K.
, and
Muzychka
,
Y.
,
2020
, “
Effect of Thermal Transport on Solidification of Salt and Freshwater Water Droplets on Marine Surfaces
,”
Int. J. Heat Mass Transfer
,
153
, p.
119452
.10.1016/j.ijheatmasstransfer.2020.119452
3.
Mal'kov
,
V. A.
, and
Dobashin
,
P. A.
,
1972
, “
The Effect of Soft Metal Coatings and Linings on Contact Resistance
,”
J. Eng. Phys.
,
17
(
5
), pp.
1389
1395
.10.1007/BF00828318
4.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1966
, “
Thermal Contact Resistance
,” MIT Mechanical Engineering, Cambridge, MA, Report No. DSR
74542
41
.
5.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2023
,
Thermal Spreading and Contact Resistance: Fundamentals and Applications
,
Wiley
, Hoboken, NJ.
6.
Muzychka
,
Y. S.
,
Bagnall
,
K. R.
, and
Wang
,
E. N.
,
2013
, “
Thermal Spreading Resistance and Heat Source Temperature in Compound Orthotropic Systems With Interfacial Resistance
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
3
(
11
), pp.
1826
1841
.10.1109/TCPMT.2013.2269273
7.
Mikic
,
B.
,
1969
, “
On Mechanism of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
12
(
10
), pp.
1311
1323
.10.1016/0017-9310(69)90174-4
8.
Yovanovich
,
M.
,
Tien
,
C.
, and
Schneider
,
G.
,
1979
, “
General Solution of Constriction Resistance Within a Compound Disk
,”
AIAA
Paper No. 1979-178.10.2514/6.1979-178
9.
Nelson
,
D. J.
, and
Sayers
,
W. A.
,
1992
, “
A Comparison of Two-Dimensional Planar, Axisymmetric and Three-Dimensional Spreading Resistances
,”
[1992 Proceedings] Eighth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, Austin, TX, Feb. 3–5, pp.
62
68
.10.1109/STHERM.1992.172852
10.
Song
,
S.
,
1995
, “
Closed-Form Equation for Thermal Constriction/Spreading Resistances With Variable Resistance Boundary Condition
,”
Proc. IEPS Conference
, Atlanta, GA, pp.
111
121
.
11.
Lee
,
S.
,
1995
, “
Constriction/Spreading Resistance Model for Electronics Packaging
,”
Proc. ASME/JSME Thermal Engineering Conference
, Maui, HI, pp.
199
206
.https://file.elecfans.com/web1/M00/20/C0/ooYBAFmk1LSAMH2xAAOv1ilC3UE457.pdf
12.
Muzychka
,
Y. S.
,
Stevanovic
,
M.
, and
Yovanovich
,
M. M.
,
2001
, “
Thermal Spreading Resistances in Compound Annular Sectors
,”
J. Thermophysics Heat Transfer
,
15
(
3
), pp.
354
359
.10.2514/2.6615
13.
Jain
,
A.
,
2024
, “
Thermal Spreading Resistance From an Isothermal Source Into a Finite-Thickness Body
,”
Int. J. Heat Mass Transfer
,
220
, p.
124946
.10.1016/j.ijheatmasstransfer.2023.124946
14.
Bagnall
,
K. R.
,
Muzychka
,
Y. S.
, and
Wang
,
E. N.
,
2014
, “
Analytical Solution for Temperature Rise in Complex Multilayer Structures With Discrete Heat Sources
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
4
(
5
), pp.
817
830
.10.1109/TCPMT.2014.2299766
15.
Yovanovich
,
M. M.
,
Muzychka
,
Y. S.
, and
Culham
,
J. R.
,
1999
, “
Spreading Resistance of Isothermal Rectangles and Strips on Compound Flux Channels
,”
J. Thermophys. Heat Transfer
, pp.
541
548
.10.2514/6.1998-873
16.
Muzychka
,
Y. S.
,
Sridhar
,
M. R.
,
Yovanovich
,
M. M.
, and
Antonetti
,
V. W.
,
1999
, “
Thermal Spreading Resistance in Multilayered Contacts: Applications in Thermal Contact Resistance
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
489
494
.10.2514/2.6466
17.
Muzychka
,
Y. S.
,
Culham
,
R.
, and
Yovanovich
,
M. M.
,
2003
, “
Thermal Spreading Resistances in Rectangular Flux Channels: Part I Geometric Equivalences
,”
AIAA
Paper No. 2003-4187.10.2514/6.2003-4187
18.
Muzychka
,
Y. S.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2003
, “
Thermal Spreading Resistances in Rectangular Flux Channels: Part II Edge Cooling
,”
AIAA
Paper No. 2003-4188.10.2514/6.2003-4188
19.
Bhatt
,
A.
, and
Rhee
,
J.
,
2006
, “
Thermal Spreading Resistance for Square and Rectangular Entities
,”
11th International Symposium on Advanced Packaging Materials: Processes, Properties and Interface
, Atlanta, GA, Mar. 15–17, pp.
175
178
.10.1109/ISAPM.2006.1666040
20.
Muzychka
,
Y. S.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2003
, “
Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels
,”
ASME J. Electron. Packag.
,
125
(
2
), pp.
178
185
.10.1115/1.1568125
21.
Muzychka
,
Y. S.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2004
, “
Thermal Spreading Resistance in Compound and Orthotropic Systems
,”
J. Thermophys. Heat Transfer
,
18
(
1
), pp.
45
51
.10.2514/1.1267
22.
Negus
,
K.
, and
Yovanovich
,
M.
,
1989
, “
Transient Temperature Rise at Surface Due to Arbitrary Contacts on Half-Spaces
,”
Trans. Can. Soc. Mech. Eng.
,
13
(
1–2
), pp.
1
9
.10.1139/tcsme-1989-0001
23.
Negus
,
K.
,
Yovanovich
,
M. M.
, and
Beck
,
J.
,
1989
, “
On the Nondimensionalization of Constriction Resistance for Semi-Infinite Heat Flux Tubes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
111
(
3
), pp.
804
807
.10.1115/1.3250755
24.
Turyk
,
P.
, and
Yovanovich
,
M. M.
,
1984
, “
Transient Constriction Resistance for Elemental Flux Channels Heated by Uniform Flux Sources
,”
National Heat Transfer Conference
, Niagra Falls, NY, Aug. 6–8.http://www.mhtl.uwaterloo.ca/old/paperlib/papers/constrict/transient/abstract1.html
25.
Muzychka
,
Y. S.
,
2014
, “
Spreading Resistance in Compound Orthotropic Flux Tubes and Channels With Interfacial Resistance
,”
J. Thermophys. Heat Transfer
,
28
(
2
), pp.
313
319
.10.2514/1.T4203
26.
Yovanovich
,
M. M.
,
1997
, “
Transient Spreading Resistance of Arbitrary Isoflux Contact Areas: Development of a Universal Time Function
,”
AIAA
Paper No. 1997-2458.10.2514/6.1997-2458
27.
Yovanovich
,
M. M.
,
Teertstra
,
P.
, and
Culham
,
J. R.
,
1995
, “
Modeling Transient Conduction From Isothermal Convex Bodies of Arbitrary Shape
,”
J. Thermophys. Heat Transfer
,
9
(
3
), pp.
385
390
.10.2514/3.678
28.
Beck
,
J.
,
1979
, “
Average Transient Temperature Within a Body Heated by a Disk Heat Source
,” Heat Transfer, Thermal Control, and Heat Pipes, Progress in Astronautics and Aeronautics,
AIAA
, New York.10.2514/5.9781600865442.0003.0024
29.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
30.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2023
, “
Compact Models for Transient Thermal Spreading Resistance in Half-Space, Flux Tube, and Flux Channel Regions
,” 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 30–June 2, pp.
1
10
.10.1109/ITherm55368.2023.10177640
31.
Lam
,
L.
, Goudarzi, S., and
Muzychka
,
Y. S.
,
2023
, “
Transient Thermal Spreading Resistance From an Isothermal Source in a Circular Flux Tube
,”
AIAA J. Thermophys. Heat Transfer
, epub.
You do not currently have access to this content.