Abstract

The concept of both penetration and deviation times for rectangular coordinates along with the principle of superposition for linear problems allows short-time solutions to be constructed for a one-dimensional (1D) rectangular finite body from the well-known solutions of a semi-infinite medium. Some adequate physical considerations due to thermal symmetries with respect to the middle plane of a slab to simulate homogeneous boundary conditions of the first and second kinds are also needed. These solutions can be applied at the level of accuracy desired (one part in 10A, with A = 2, 3, …, 15) with respect to the maximum temperature variation (that always occurs at the active surface and at the time of evaluation) in place of the exact analytical solution to the problem of interest consisting of an infinite number of terms and, hence, unapplicable.

References

1.
Cannon
,
J. R.
,
1984
,
The One-Dimensional Heat Equation
,
Addison-Wesley Publishing Company
,
Menlo Park, CA
.
2.
Carslaw
,
H. S.
, and
Jaeger
,
C. J.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
Oxford, UK
.
3.
Özişik
,
M. N.
,
1993
,
Heat Conduction
, 2nd ed.,
Wiley
,
New York
.
4.
Cole
,
K. D.
,
Beck
,
J. V.
,
Haji-Sheikh
,
A.
, and
Litkouhi
,
B.
,
2011
,
Heat Conduction Using Green's Functions
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
5.
Beck
,
J. V.
,
Keltner
,
N. R.
, and
Schisler
,
I. P.
,
1985
, “
Influence Functions for the Unsteady Surface Element Method
,”
AIAA J.
,
23
(
12
), pp.
1978
1982
.10.2514/3.9205
6.
Lavine
,
A. S.
, and
Bergman
,
T. L.
,
2008
, “
Small and Large Time Solutions for Surface Temperature, Surface Heat Flux, and Energy Input in Transient, One-Dimensional Conduction
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
130
(
10
), p. 101302.10.1115/1.2945902
7.
de Monte
,
F.
,
Beck
,
J. V.
, and
Amos
,
D. E.
,
2008
, “
Diffusion of Thermal Disturbances in Two-Dimensional Cartesian Transient Heat Conduction
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5931
5941
.10.1016/j.ijheatmasstransfer.2008.05.015
8.
McMasters
,
R. L.
,
de Monte
,
F.
,
Beck
,
J. V.
,
Nallapaneni
,
S. C.
, and
Amos
,
D. E.
,
2016
, “
Diffusion Penetration Time for Transient Heat Conduction
,”
J. Thermophys. Heat Transfer
,
30
(
3
), pp.
614
621
.10.2514/1.T4819
9.
Ostrogorsky
,
A. G.
, and
Mikic
,
B. B.
,
2018
, “
Semi-Infinite Solid Solution Adjusted for Radial Systems Using Time-Dependent Participating Volume-to-Surface Ratio and Simplified Solutions for Finite Solids
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
10
), p.
101301
.10.1115/1.4039688
10.
Yen
,
D. H. Y.
,
Beck
,
J. V.
,
McMasters
,
R. L.
, and
Amos
,
D. E.
,
2002
, “
Solution of an Initial-Boundary Value Problem for Heat Conduction in a Parallelepiped by Time Partitioning
,”
Int. J. Heat Mass Transfer
,
45
(
21
), pp.
4267
4279
.10.1016/S0017-9310(02)00145-X
11.
Beck
,
J. V.
,
McMasters
,
R.
,
Dowding
,
K. J.
, and
Amos
,
D. E.
,
2006
, “
Intrinsic Verification Methods in Linear Heat Conduction
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2984
2994
.10.1016/j.ijheatmasstransfer.2006.01.045
12.
Woodbury
,
K. A.
,
Najafi
,
H.
,
de Monte
,
F.
, and
Beck
,
J. V.
,
2023
,
Inverse Heat Conduction. Ill-Posed Problems
, 2nd ed.,
Wiley, Inc
., Hoboken, NJ.
13.
Oldham
,
K.
,
Myland
,
J.
, and
Spanier
,
J.
,
2009
,
An Atlas of Functions
, 2nd ed.,
Springer
,
New York
.
14.
Roy
,
C. J.
,
2005
, “
Review of Code and Solution Verification Procedures for Computational Simulation
,”
J. Comput. Phys.
,
205
(
1
), pp.
131
156
.10.1016/j.jcp.2004.10.036
15.
ASME V V 20-2009 R
,
2016
, “
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,”
Presented at 2016 Inverse Problems Symposium, Virginia Military Institute
, Lexington, VA, June 5–7, pp.
20
2021
.https://www.osti.gov/servlets/purl/1368927
16.
R. L.
,
McMasters
,
F.
,
de Monte
,
G.
,
D'Alessandro
,
J.
, and
V.
,
Beck
,
2021
, “
Verification of Ansys and Matlab Heat Conduction Results Using an “Intrinsically” Verified Exact Analytical Solution
,”
ASME J. Verif. Valid. Uncertainty Quantif.
,
6
(
2
), p.
021005
.10.1115/1.4050610
17.
Cole
,
K. D.
,
Beck
,
J. V.
,
Woodbury
,
K. A.
, and
de Monte
,
F.
,
2014
, “
Intrinsic Verification and a Heat Conduction Database
,”
Int. J. Therm. Sci.
,
78
, pp.
36
47
.10.1016/j.ijthermalsci.2013.11.002
18.
Zhao
,
T.
,
2023
, “
In Memoriam Prof. James Vere Beck (1930–2022)
,”
Int. J. Heat Mass Transfer
,
201
(
Part 1
), p.
123593
.10.1016/j.ijheatmasstransfer.2022.123593
You do not currently have access to this content.