Abstract

Direct measurement of surface heat flux could be extremely challenging, if not impossible, in numerous applications. In such cases, the use of temperature measurement data from subsurface locations can facilitate the determination of surface heat flux and temperature through the solution of the inverse heat conduction problem (IHCP). Several different techniques have been developed over the years for solving IHCPs, with different levels of complexity and accuracy. The filter coefficient technique has proved to be a promising approach for solving IHCPs. Inspired by the filter coefficient approach, a novel method is presented in this paper for solving one-dimensional IHCPs in a domain with temperature-dependent material properties. A test case is developed in COMSOL Multiphysics where the front side of a slab is subject to known transient heat flux and the temperature distributions within the domain are calculated through numerical simulation. The IHCP solution in the form of filter coefficients is defined and a genetic algorithm (GA) is used for the calculation of filter matrix. The number of significant filter coefficients required to evaluate surface heat flux at each time-step is determined through trial and error and the optimal number is selected for evaluating the solution. The structure of the filter matrix is assessed and discussed. The resulting filter coefficients are then used to evaluate the surface heat flux for several different test cases and the performance of the proposed approach is assessed in detail. The results showed that the presented approach is robust and can result in finding optimal filter coefficients that can accurately estimate various types of surface heat flux profiles using temperature data from a limited number of time steps and in a near real-time fashion.

References

1.
Cole
,
K. D.
,
Beck
,
J. V.
,
Haji-Sheikh
,
A.
, and
Litkouhi
,
B.
,
2011
,
Heat Conduction Using Green's Functions
,
CRC Press
,
New York
.
2.
Hahn
,
D. W.
, and
Özisik
,
M. N.
,
1980
,
Heat Conduction
, 1st ed.,
Wiley
,
New York
.
3.
Woodbury
,
K. A.
,
Najafi
,
H.
,
de Monte
,
F.
, and
Beck
,
J. V.
,
2023
,
Inverse Heat Conduction: Ill-Posed Problems
, 2nd ed.,
Wiley, Inc
.,
Hoboken, NJ
.
4.
Woodbury
,
K. A.
, and
Beck
,
J. V.
,
2013
, “
Estimation Metrics and Optimal Regularization in a Tikhonov Digital Filter for the Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
62
(
1
), pp.
31
39
.10.1016/j.ijheatmasstransfer.2013.02.052
5.
Najafi
,
H.
,
2015
, “
Real-Time Heat Flux Estimation Using Filter Based Solutions for Inverse Heat Conduction Problems
,” Ph.D. thesis,
University of Alabama
,
Tuscaloosa, AL
.
6.
Najafi
,
H.
,
Woodbury
,
K. A.
, and
Beck
,
J. V.
,
2015
, “
Real Time Solution for Inverse Heat Conduction Problems in a Two-Dimensional Plate With Multiple Heat Fluxes at the Surface
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1148
1156
.10.1016/j.ijheatmasstransfer.2015.08.020
7.
Najafi
,
H.
,
Woodbury
,
K. A.
, and
Beck
,
J. V.
,
2015
, “
A Filter Based Solution for Inverse Heat Conduction Problems in Multi-Layer Mediums
,”
Int. J. Heat Mass Transfer
,
83
, pp.
710
720
.10.1016/j.ijheatmasstransfer.2014.12.055
8.
Najafi
,
H.
,
Woodbury
,
K. A.
,
Beck
,
J. V.
, and
Keltner
,
N. R.
,
2015
, “
Real-Time Heat Flux Measurement Using Directional Flame Thermometer
,”
Appl. Therm. Eng.
,
86
, pp.
229
237
.10.1016/j.applthermaleng.2015.04.053
9.
Uyanna
,
O.
, and
Najafi
,
H.
,
2022
, “
A Novel Solution for Inverse Heat Conduction Problem in One-Dimensional Medium With Moving Boundary and Temperature-Dependent Material Properties
,”
Int. J. Heat Mass Transfer
,
182
, p.
122023
.10.1016/j.ijheatmasstransfer.2021.122023
10.
Uyanna
,
O.
,
Najafi
,
H.
, and
Rajendra
,
B.
,
2021
, “
An Inverse Method for Real-Time Estimation of Aerothermal Heating for Thermal Protection Systems of Space Vehicles
,”
Int. J. Heat Mass Transfer
,
177
, p.
121482
.10.1016/j.ijheatmasstransfer.2021.121482
11.
Najafi
,
H.
,
Uyanna
,
O.
, and
Zhang
,
J.
,
2020
, “
Application of Artificial Neural Network as a Near-Real Time Technique for Solving Non-Linear Inverse Heat Conduction Problems in a One-Dimensional Medium With Moving Boundary
,” ASME Paper No. HT2020-9054. 10.1115/HT2020-9054
12.
Zhang
,
J.
,
2020
, “
Application of Neural Networks for Solving One Dimensional Inverse Heat Conduction Problems With Surface Ablation
,” https://repository.lib.fit.edu/handle/11141/3195 (accessed: Oct. 14, 2021).
13.
Raudenský
,
M.
,
Woodbury
,
K. A.
,
Kral
,
J.
, and
Brezina
,
T.
,
1995
, “
Genetic Algorithm in Solution of Inverse Heat Conduction Problems
,”
Numer. Heat Transfer, Part B
,
28
(
3
), pp.
293
306
.10.1080/10407799508928835
14.
Pourgholi
,
R.
,
Dana
,
H.
, and
Tabasi
,
S. H.
,
2014
, “
Solving an Inverse Heat Conduction Problem Using Genetic Algorithm: Sequential and Multi-Core Parallelization Approach
,”
Appl. Math. Model.
,
38
(
7–8
), pp.
1948
1958
.10.1016/j.apm.2013.10.019
15.
Brociek
,
R.
, and
Słota
,
D.
,
2018
, “
Reconstruction of the Robin Boundary Condition and Order of Derivative in Time Fractional Heat Conduction Equation
,”
Math. Model. Nat. Phenom.
,
13
(
1
), p.
5
.10.1051/mmnp/2018008
16.
Brociek
,
R.
, and
Słota
,
D.
,
2016
, “
Application and Comparison of Intelligent Algorithms to Solve the Fractional Heat Conduction Inverse Problem
,”
Inf. Technol. Control
,
45
(
2
), pp.
184
194
.10.5755/j01.itc.45.2.13716
17.
Mulani
,
K.
,
Talukdar
,
P.
,
Das
,
A.
,
Alagirusamy
,
R.
, and
Udayraj
,
2015
, “
Performance Analysis and Feasibility Study of Ant Colony Optimization, Particle Swarm Optimization and Cuckoo Search Algorithms for Inverse Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
89
, pp.
359
378
.10.1016/j.ijheatmasstransfer.2015.05.015
18.
Hetmaniok
,
E.
,
Słota
,
D.
, and
Zielonka
,
A.
,
2012
, “
Application of Swarm Intelligence Algorithms in Solving the Inverse Heat Conduction Problem
,”
Comp. Ass. Method. Eng. and Sci.
,
19
(
4
), pp.
361
367
.https://journals.indexcopernicus.com/search/article?articleId=93940
19.
Krejsa
,
J.
,
Woodbury
,
K. A.
,
Ratliff
,
J. D.
, and
Raudensky
,
M.
,
1999
, “
Assessment of Strategies and Potential for Neural Networks in the Inverse Heat Conduction Problem
,”
Inverse Probl. Eng.
,
7
(
3
), pp.
197
213
.10.1080/174159799088027694
20.
Raudenský
,
M.
,
Horský
,
J.
, and
Krejsa
,
J.
,
1995
, “
Usage of Neural Network for Coupled Parameter and Function Specification Inverse Heat Conduction Problem
,”
Int. Commun. Heat Mass Transfer
,
22
(
5
), pp.
661
670
.10.1016/0735-1933(95)00052-Z
21.
Szenasi
,
S.
,
Fried
,
Z.
, and
Felde
,
I.
,
2020
, “
Training of Artificial Neural Network to Solve the Inverse Heat Conduction Problem
,”
IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI)
, Herlany, Slovakia, Jan. 23–25, pp.
293
298
.10.1109/SAMI48414.2020.9108733
22.
Deng
,
S.
, and
Hwang
,
Y.
,
2007
, “
Solution of Inverse Heat Conduction Problems Using Kalman Filter-Enhanced Bayesian Back Propagation Neural Network Data Fusion
,”
Int. J. Heat Mass Transfer
,
50
(
11–12
), pp.
2089
2100
.10.1016/j.ijheatmasstransfer.2006.11.019
23.
Yang
,
P.
, and
Najafi
,
H.
,
2022
, “
A Comparative Study of Multi-Stage Approaches for Wind Farm Layout Optimization
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
101302
.10.1115/1.4053869
24.
Najafi
,
H.
, and
Najafi
,
B.
,
2010
, “
Multi-Objective Optimization of a Plate and Frame Heat Exchanger via Genetic Algorithm
,”
Heat Mass Transfer
,
46
(
6
), pp.
639
647
.10.1007/s00231-010-0612-8
25.
Athith
,
T. S.
,
Trilok
,
G.
,
Jadhav
,
P. H.
, and
Gnanasekaran
,
N.
,
2022
, “
Heat Transfer Optimization Using Genetic Algorithm and Artificial Neural Network in a Heat Exchanger With Partially Filled Different High Porosity Metal Foam
,”
Mater Today Proc.
,
51
(
Part 3
), pp.
1642
1648
.10.1016/j.matpr.2021.11.248
26.
Najafi
,
H.
, and
Woodbury
,
K. A.
,
2013
, “
Optimization of a Cooling System Based on Peltier Effect for Photovoltaic Cells
,”
Sol. Energy
,
91
, pp.
152
160
.10.1016/j.solener.2013.01.026
27.
Nian
,
Y.
,
Wang
,
X.
,
Deng
,
Z.
, and
Cheng
,
W.
,
2022
, “
Estimation Method for Layered Ground Thermal Conductivity Using Genetic Algorithm Based on a 2-D Heat Transfer Model
,”
Energy Build.
,
258
, p.
111841
.10.1016/j.enbuild.2022.111841
28.
Czél
,
B.
, and
Gróf
,
G.
,
2012
, “
Inverse Identification of Temperature-Dependent Thermal Conductivity via Genetic Algorithm With Cost Function-Based Rearrangement of Genes
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4254
4263
.10.1016/j.ijheatmasstransfer.2012.03.067
29.
Liu
,
F. B.
,
2008
, “
A Modified Genetic Algorithm for Solving the Inverse Heat Transfer Problem of Estimating Plan Heat Source
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3745
3752
.10.1016/j.ijheatmasstransfer.2008.01.002
30.
Liu
,
F. B.
,
2012
, “
Particle Swarm Optimization-Based Algorithms for Solving Inverse Heat Conduction Problems of Estimating Surface Heat Flux
,”
Int. J. Heat Mass Transfer
,
55
(
7–8
), pp.
2062
2068
.10.1016/j.ijheatmasstransfer.2011.12.007
31.
Gosselin
,
L.
,
Tye-Gingras
,
M.
, and
Mathieu-Potvin
,
F.
,
2009
, “
Review of Utilization of Genetic Algorithms in Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2169
2188
.10.1016/j.ijheatmasstransfer.2008.11.015
32.
Najafi
,
H.
, and
Woodbury
,
K. A.
,
2015
, “
Online Heat Flux Estimation Using Artificial Neural Network as a Digital Filter Approach
,”
Int. J. Heat Mass Transfer
,
91
(9–10), pp.
808
817
.10.1016/j.ijheatmasstransfer.2015.08.010
33.
Beck
,
J. V.
,
2008
, “
Filter Solutions for the Nonlinear Inverse Heat Conduction Problem
,”
Inverse Probl. Sci. Eng.
,
16
(
1
), pp.
3
20
.10.1080/17415970701198332
34.
Keltner
,
N. R.
,
Beck
,
J. V.
, and
Nakos
,
J. T.
,
2010
, “
Using Directional Flame Thermometers for Measuring Thermal Exposure
,”
J. ASTM Int.
,
7
(
2
), pp.
1
12
.10.1520/JAI102280
35.
Aggarwal
,
C. C.
,
2018
,
Neural Networks and Deep Learning
,
Springer
,
Cham
.
36.
Pétrowski
,
A.
, and
Ben-Hamida
,
S.
,
2016
, “
Evolutionary Algorithms: An Overview
,” in
Evolutionary Algorithms in Engineering Applications
, Vol.
9
,
Springer
,
Berlin, Heidelberg
, pp.
3
28
.
37.
Yang
,
P.
, and
Najafi
,
H.
,
2022
, “
The Effect of Using Different Wake Models on Wind Farm Layout Optimization: A Comparative Study
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
070904
.10.1115/1.4052775
You do not currently have access to this content.