Abstract

Further consideration on the two-pass channel flow is still necessary due to the complexity of 180-deg turn, rotation, and wall ribs. Numerical investigations have repeatedly revealed differences from experiments, with the primary focus of the smooth walls. Thus, this work deals with newly added ribs and three-equation variant of the shear stress transport (SST) k–ω model to the current fluid flow and heat transfer depending on an existing experiment as a reference. The adapted turbulence model thought to be more susceptible to U-bend zone, rotation, and wall corrugation is applied using comsolmultiphysics program. A two-pass profile with leafy characteristics, derived from a prior work by the first author, is implemented for the first time and contrasted against alternative corrugation designs. The findings demonstrated that applying the suggested model reduces the percentage error between the computational and experimental data to less than 20%. The Nusselt numbers computed at different leafy-corrugated channel divisions are augmented to 30% with 70% surface temperature reduction; however, the friction penalty rises too.

References

1.
Shevchuk
,
I. V.
,
2015
,
Modelling of Convective Heat and Mass Transfer in Rotating Flows
, 1st ed.,
Mathematical Engineering. Springer International Publishing
,
Basel, Switzerland
.
2.
Han
,
J.-C.
,
Zhang
,
Y.-M.
, and
Kalkuehler
,
K.
,
1993
, “
Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel With Smooth Walls
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
115
(
4
), pp.
912
920
.10.1115/1.2911387
3.
Yeranee
,
K.
, and
Rao
,
Y.
,
2021
, “
A Review of Recent Studies on Rotating Internal Cooling for Gas Turbine Blades
,”
Chin. J. Aeronaut.
,
34
(
7
), pp.
85
113
.10.1016/j.cja.2020.12.035
4.
Wright
,
L. M.
,
Fu
,
W.-L.
, and
Han
,
J.-C.
,
2004
, “
Thermal Performance of Angled, v-Shaped, and w-Shaped Rib Turbulators in Rotating Rectangular Cooling Channels (ar = 4:1)
,”
ASME J. Turbomach.
,
126
(
4
), pp.
604
614
.10.1115/1.1791286
5.
Fu
,
W.-L.
,
Wright
,
L. M.
, and
Han
,
J.-C.
,
2006
, “
Rotational Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels With Smooth Walls and 45 degree Ribbed Walls
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
128
(
11
), pp.
1130
1141
.10.1115/1.2352782
6.
Chang
,
S. W.
,
Lees
,
A. W.
,
Liou
,
T.-M.
, and
Hong
,
G. F.
,
2010
, “
Heat Transfer of a Radially Rotating Furrowed Channel With Two Opposite Skewed Sinusoidal Wavy Walls
,”
Int. J. Therm. Sci.
,
49
(
5
), pp.
769
785
.10.1016/j.ijthermalsci.2009.11.011
7.
Brahim
,
B.
, and
Miloud
,
A.
,
2019
, “
Numerical Simulation of the Effect of Channel Orientation on Fluid Flow and Heat Transfer at High Buoyancy Number in a Rotating Two-Pass Channel With Angled Ribs
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
2
), p.
022502
.10.1115/1.4041797
8.
Al-Zurfi
,
N.
,
Alhusseny
,
A.
, and
Nasser
,
A.
,
2020
, “
Effect of Rotation on Forced Convection in Wavy Wall Channels
,”
Int. J. Heat Mass Transfer
,
149
, p.
119177
.10.1016/j.ijheatmasstransfer.2019.119177
9.
Zhang
,
Q.
,
Wang
,
T.
,
Hou
,
Q.
,
Song
,
K.
,
Hu
,
W.
, and
Wu
,
X.
,
2022
, “
Thermal Hydraulic Performance Augmentation by Petal-Shaped Ribs in a Two-Pass Cooling Channel
,”
Case Stud. Therm. Eng.
,
40
, p.
102542
.10.1016/j.csite.2022.102542
10.
Moradi
,
T.
,
Shahbazian
,
H.
,
Hoseinalipour
,
M.
, and
Sunden
,
B.
,
2023
, “
Effects of Wavy Ribs on Vortex Generation and Thermal-Hydraulic Performance in a Rotating Rectangular Channel
,”
Appl. Therm. Eng.
,
222
, p.
119952
.10.1016/j.applthermaleng.2022.119952
11.
Bukht Majmader
,
F.
, and
Hasan
,
M. J.
,
2024
, “
Effects of Bidirectional Rib Arrangements on Turbulent Flow Structure and Heat Transfer Characteristics of a Two-Pass Channel for Turbine Blade Internal Cooling
,”
Int. Commun. Heat Mass Transfer
,
156
, p.
107688
.10.1016/j.icheatmasstransfer.2024.107688
12.
Shevchuk
,
I. V.
,
Jenkins
,
S. C.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
,
Neumann
,
S. O.
, and
Schnieder
,
M.
,
2011
, “
Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
133
(
5
), p.
051701
.10.1115/1.4003080
13.
Siddique
,
W.
,
Shevchuk
,
I. V.
,
El-Gabry
,
L.
,
Hushmandi
,
N. B.
, and
Fransson
,
T. H.
,
2013
, “
On Flow Structure, Heat Transfer and Pressure Drop in Varying Aspect Ratio Two-Pass Rectangular Channel With Ribs at 45°
,”
Heat Mass Transfer
,
49
(
5
), pp.
679
694
.10.1007/s00231-013-1111-5
14.
Wang
,
L.
,
Wang
,
S.
,
Wen
,
F.
,
Zhou
,
X.
, and
Wang
,
Z.
,
2018
, “
Heat Transfer and Flow Characteristics of u-Shaped Cooling Channels With Novel Wavy Ribs Under Stationary and Rotating Conditions
,”
Int. J. Heat Mass Transfer
,
126
, pp.
312
333
.10.1016/j.ijheatmasstransfer.2018.05.123
15.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2022
, “
Experimental and Large Eddy Simulation Study for Visualizing Complex Flow Phenomena of Gas Turbine Internal Blade Cooling Channel With No Bend
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
062104
.10.1115/1.4051900
16.
Al-Qahtani
,
M.
,
Jang
,
Y.-J.
,
Chen
,
H.-C.
, and
Han
,
J.-C.
,
2002
, “
Prediction of Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels With 45-Deg Rib Turbulators
,”
ASME J. Turbomach.
,
124
(
2
), pp.
242
250
.10.1115/1.1450568
17.
Han
,
J.-C.
,
2004
, “
Recent Studies in Turbine Blade Cooling
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
443
457
.10.1155/S1023621X04000442
18.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
,
2006
, “
Detached Eddy Simulation of Flow and Heat Transfer in Fully Developed Rotating Internal Cooling Channel With Normal Ribs
,”
Int. J. Heat Fluid Flow
,
27
(
3
), pp.
351
370
.10.1016/j.ijheatfluidflow.2005.12.003
19.
Schüler
,
M.
,
Zehnder
,
F.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Neumann
,
S. O.
,
2011
, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
ASME J. Turbomach.
,
133
(
2
), p.
021017
.10.1115/1.4000550
20.
Siddique
,
W.
,
El-Gabry
,
L.
,
Shevchuk
,
I. V.
,
Hushmandi
,
N. B.
, and
Fransson
,
T. H.
,
2011
, “
Flow Structure, Heat Transfer and Pressure Drop in Varying Aspect Ratio Two-Pass Rectangular Smooth Channels
,”
Heat Mass Transfer
,
48
(
5
), pp.
735
748
.10.1007/s00231-011-0926-1
21.
Wang
,
W.
,
Gao
,
J.
,
Xu
,
L.
, and
Shi
,
X.
,
2012
, “
Flow and Heat Transfer Characteristics in Rotating Two-Pass Channels Cooled by Superheated Steam
,”
Chin. J. Aeronaut.
,
25
(
4
), pp.
524
532
.10.1016/S1000-9361(11)60416-0
22.
Huang
,
X.
,
Yang
,
W.
,
Li
,
Y.
,
Qiu
,
B.
,
Guo
,
Q.
, and
Zhuqing
,
L.
,
2019
, “
Review on the Sensitization of Turbulence Models to Rotation/Curvature and the Application to Rotating Machinery
,”
Appl. Math. Comput.
,
341
, pp.
46
69
.10.1016/j.amc.2018.08.027
23.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Heat Transfer in Internal Cooling Channels of Gas Turbine Blades: Buoyancy and Density Ratio Effects
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112001
.10.1115/1.4043654
24.
Liu
,
J.
,
Hussain
,
S.
,
Wang
,
W.
,
Wang
,
L.
,
Xie
,
G.
, and
Sundén
,
B.
,
2019
, “
Heat Transfer Enhancement and Turbulent Flow in a Rectangular Channel Using Perforated Ribs With Inclined Holes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
4
), p.
041702
.10.1115/1.4042841
25.
Liu
,
J.
,
Hussain
,
S.
,
Wang
,
W.
,
Xie
,
G.
, and
Sundén
,
B.
,
2021
, “
Experimental and Numerical Investigations of Heat Transfer and Fluid Flow in a Rectangular Channel With Perforated Ribs
,”
Int. Commun. Heat Mass Transfer
,
121
, p.
105083
.10.1016/j.icheatmasstransfer.2020.105083
26.
Menter
,
F.
,
1993
, “
Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.10.2514/6.93-2906
27.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
28.
Malalasekera
,
W.
, and
Versteeg
,
H. K.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Education Ltd
,
Harlow, England
.
29.
Dhakal
,
T. P.
, and
Keith Walters
,
D.
,
2011
, “
A Three-Equation Variant of the Sst k-ω Model Sensitized to Rotation and Curvature Effects
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111201
.10.1115/1.4004940
30.
Abdulrasool
,
A. A.
, and
Abbas
,
A. K.
,
2022
, “
Computational Analysis of Novel Channel Design for Improving Thermo-Hydraulic Performance
,”
Int. Commun. Heat Mass Transfer
,
135
, p.
106120
.10.1016/j.icheatmasstransfer.2022.106120
31.
Bergles
,
A. E.
,
Bunn
,
R. L.
, and
Junkhan
,
G. H.
,
1974
, “
Extended Performance Evaluation Criteria for Enhanced Heat Transfer Surfaces
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
113
120
.10.1016/0094-4548(74)90147-7
32.
Pepper
,
D. W.
, and
Heinrich
,
J. C.
,
2017
,
The Finite Element Method: Basic Concepts and Applications With MATLAB®, MAPLE, and COMSOL
,
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.