Graphical Abstract Figure

We don't include graphical abstracts.

Graphical Abstract Figure

We don't include graphical abstracts.

Close modal

Abstract

As device miniaturization advances, managing heat at the nanoscale becomes increasingly critical. Nanoscale heat transfer presents unique challenges, including size effect, ballistic transport, and complex phonon interactions, which conventional macroscopic theories cannot fully address. Molecular dynamics (MD) simulations have been a powerful tool for directly modeling atomistic motion and interactions, offering valuable insights into thermal phenomena. This article provides an overview of MD methods and their contributions to understanding thermal transport in inorganic crystals, amorphous solids, polymers, and interfaces. Additionally, we offer our perspective on the emerging trends and future research directions in MD simulations, emphasizing their potential to unravel complex thermal phenomena and guide the design of next-generation thermal materials and devices.

References

1.
Qian
,
X.
,
Zhou
,
J.
, and
Chen
,
G.
,
2021
, “
Phonon-Engineered Extreme Thermal Conductivity Materials
,”
Nat. Mater.
,
20
(
9
), pp.
1188
1202
.10.1038/s41563-021-00918-3
2.
Hu
,
Y.
,
Feng
,
T.
,
Gu
,
X.
,
Fan
,
Z.
,
Wang
,
X.
,
Lundstrom
,
M.
,
Shrestha
,
S. S.
, and
Bao
,
H.
,
2020
, “
Unification of Nonequilibrium Molecular Dynamics and the Mode-Resolved Phonon Boltzmann Equation for Thermal Transport Simulations
,”
Phys. Rev. B
,
101
(
15
), p.
155308
.10.1103/PhysRevB.101.155308
3.
Hu
,
Y.
,
Xu
,
J.
,
Ruan
,
X.
, and
Bao
,
H.
,
2024
, “
Defect Scattering Can Lead to Enhanced Phonon Transport at Nanoscale
,”
Nat. Commun.
,
15
(
1
), p.
3304
.10.1038/s41467-024-47716-4
4.
Esfarjani
,
K.
,
Chen
,
G.
, and
Stokes
,
H. T.
,
2011
, “
Heat Transport in Silicon From First-Principles Calculations
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
84
(
8
), p.
085204
.10.1103/PhysRevB.84.085204
5.
Broido
,
D. A.
,
Malorny
,
M.
,
Birner
,
G.
,
Mingo
,
N.
, and
Stewart
,
D. A.
,
2007
, “
Intrinsic Lattice Thermal Conductivity of Semiconductors From First Principles
,”
Appl. Phys. Lett.
,
91
(
23
), p.
231922
.10.1063/1.2822891
6.
Tian
,
Z.
,
Garg
,
J.
,
Esfarjani
,
K.
,
Shiga
,
T.
,
Shiomi
,
J.
, and
Chen
,
G.
,
2012
, “
Phonon Conduction in PbSe, PbTe, and PbTe1−xSex From First-Principles Calculations
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
85
(
18
), p.
184303
.10.1103/PhysRevB.85.184303
7.
Yang
,
R.
, and
Chen
,
G.
,
2004
, “
Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites
,”
Phys. Rev. B
,
69
(
19
), p.
195316
.10.1103/PhysRevB.69.195316
8.
Yang
,
R.
,
Chen
,
G.
,
Laroche
,
M.
, and
Taur
,
Y.
,
2005
, “
Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
3
), pp.
298
306
.10.1115/1.1857941
9.
Tian
,
Z.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2012
, “
Enhancing Phonon Transmission Across a Si/Ge Interface by Atomic Roughness: First-Principles Study With the Green's Function Method
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
86
(
23
), p.
235304
.10.1103/PhysRevB.86.235304
10.
Zhang
,
W.
,
Fisher
,
T. S.
, and
Mingo
,
N.
,
2006
, “
Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green's Function Method
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
129
(
4
), pp.
483
491
.10.1115/1.2709656
11.
Zhao
,
H.
, and
Freund
,
J. B.
,
2009
, “
Phonon Scattering at a Rough Interface Between Two fcc Lattices
,”
J. Appl. Phys.
,
105
(
1
), p.
013515
.10.1063/1.3054383
12.
Fagas
,
G.
,
Kozorezov
,
A. G.
,
Lambert
,
C. J.
,
Wigmore
,
J. K.
,
Peacock
,
A.
,
Poelaert
,
A.
, and
den Hartog
,
R.
,
1999
, “
Lattice Dynamics of a Disordered Solid-Solid Interface
,”
Phys. Rev. B
,
60
(
9
), pp.
6459
6464
.10.1103/PhysRevB.60.6459
13.
Dai
,
J.
, and
Tian
,
Z.
,
2020
, “
Rigorous Formalism of Anharmonic Atomistic Green's Function for Three-Dimensional Interfaces
,”
Phys. Rev. B
,
101
(
4
), p.
41301
.10.1103/PhysRevB.101.041301
14.
Mingo
,
N.
, and
Yang
,
L.
,
2003
, “
Phonon Transport in Nanowires Coated With an Amorphous Material: An Atomistic Green's Function Approach
,”
Phys. Rev. B
,
68
(
24
), p.
245406
.10.1103/PhysRevB.68.245406
15.
Maruyama
,
S.
,
2003
, “
A Molecular Dynamics Simulation of Heat Conduction of a Finite Length Single-Walled Carbon Nanotube
,”
Microscale Thermophys. Eng.
,
7
(
1
), pp.
41
50
.10.1080/10893950390150467
16.
Poulikakos
,
D.
,
Arcidiacono
,
S.
, and
Maruyama
,
S.
,
2003
, “
Molecular Dynamics Simulation in Nanoscale Heat Transfer: A Review
,”
Microscale Thermophys. Eng.
,
7
(
3
), pp.
181
206
.10.1080/10893950390219047
17.
Volz
,
S. G.
, and
Chen
,
G.
,
2000
, “
Molecular-Dynamics Simulation of Thermal Conductivity of Silicon Crystals
,”
Phys. Rev. B
,
61
(
4
), p.
2651
.10.1103/PhysRevB.61.2651
18.
Bao
,
H.
,
Chen
,
J.
,
Gu
,
X.
, and
Cao
,
B.
,
2018
, “
A Review of Simulation Methods in Micro/Nanoscale Heat Conduction
,”
ES Energy Environ.
,
1
(
84
), pp.
16
55
.
19.
Xu
,
Y.-X.
,
Fan
,
H.-Z.
, and
Zhou
,
Y.-G.
,
2023
, “
Quantifying Spectral Thermal Transport Properties in Framework of Molecular Dynamics Simulations: A Comprehensive Review
,”
Rare Met.
,
42
(
12
), pp.
3914
3944
.10.1007/s12598-023-02483-x
20.
Turney
,
J. E.
,
McGaughey
,
A. J. H.
, and
Amon
,
C. H.
,
2009
, “
Assessing the Applicability of Quantum Corrections to Classical Thermal Conductivity Predictions
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
79
(
22
), p.
224305
.10.1103/PhysRevB.79.224305
21.
Kaviany
,
M.
,
2014
,
Heat Transfer Physics
,
Cambridge University Press
, New York.
22.
Hu
,
S.
,
Chen
,
J.
,
Yang
,
N.
, and
Li
,
B.
,
2017
, “
Thermal Transport in Graphene With Defect and Doping: Phonon Modes Analysis
,”
Carbon N. Y.
,
116
, pp.
139
144
.10.1016/j.carbon.2017.01.089
23.
Luo
,
T.
, and
Lloyd
,
J. R.
,
2010
, “
Equilibrium Molecular Dynamics Study of Lattice Thermal Conductivity/Conductance of Au-SAM-Au Junctions
,”
ASME. J. Heat Transfer-Trans. ASME.
, 132(3), p.
032401
.10.1115/1.4000047
24.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
,
2004
, “
Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation
,”
Phys. Rev. B
,
69
(
9
), p.
094303
.10.1103/PhysRevB.69.094303
25.
Sellan
,
D. P.
,
Landry
,
E. S.
,
Turney
,
J. E.
,
McGaughey
,
A. J. H.
, and
Amon
,
C. H.
,
2010
, “
Size Effects in Molecular Dynamics Thermal Conductivity Predictions
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
81
(
21
), p.
214305
.10.1103/PhysRevB.81.214305
26.
Tian
,
Z. T.
,
White
,
B. E.
, and
Sun
,
Y.
,
2010
, “
Phonon Wave-Packet Interference and Phonon Tunneling Based Energy Transport Across Nanostructured Thin Films
,”
Appl. Phys. Lett.
,
96
(
26
), p.
263113
.10.1063/1.3458831
27.
Kubo
,
R.
,
1966
, “
The Fluctuation-Dissipation Theorem
,”
Rep. Prog. Phys.
,
29
(
1
), p.
255
.10.1088/0034-4885/29/1/306
28.
McQuarrie
,
D. A.
,
2000
,
Statistical Mechanics
,
University Science Books
, Melville, NY.
29.
Huang
,
B. L.
,
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
,
2007
, “
Thermal Conductivity of Metal-Organic Framework 5 (MOF-5): Part I. Molecular Dynamics Simulations
,”
Int. J. Heat Mass Transfer
,
50
(
3–4
), pp.
393
404
.10.1016/j.ijheatmasstransfer.2006.10.002
30.
Wang
,
Z.
,
Safarkhani
,
S.
,
Lin
,
G.
, and
Ruan
,
X.
,
2017
, “
Uncertainty Quantification of Thermal Conductivities From Equilibrium Molecular Dynamics Simulations
,”
Int. J. Heat Mass Transfer
,
112
, pp.
267
278
.10.1016/j.ijheatmasstransfer.2017.04.077
31.
Henry
,
A.
,
Chen
,
G.
,
Plimpton
,
S. J.
, and
Thompson
,
A.
,
2010
, “
1D-to-3D Transition of Phonon Heat Conduction in Polyethylene Using Molecular Dynamics Simulations
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
82
(
14
), p.
144308
.10.1103/PhysRevB.82.144308
32.
McGaughey
,
A. J. H.
, and
Larkin
,
J. M.
,
2014
, “
Predicting Phonon Properties From Equilibrium Molecular Dynamics Simulations
,”
Annu. Rev. Heat Transfer
,
17
, pp.
49
87
.10.1615/AnnualRevHeatTransfer.2013006915
33.
He
,
Y.
,
Savić
,
I.
,
Donadio
,
D.
, and
Galli
,
G.
,
2012
, “
Lattice Thermal Conductivity of Semiconducting Bulk Materials: Atomistic Simulations
,”
Phys. Chem. Chem. Phys.
,
14
(
47
), pp.
16209
16222
.10.1039/c2cp42394d
34.
Barrat
,
J.-L.
, and
Chiaruttini
,
F.
,
2003
, “
Kapitza Resistance at the Liquid–Solid Interface
,”
Mol. Phys.
,
101
(
11
), pp.
1605
1610
.10.1080/0026897031000068578
35.
Liang
,
Z.
,
Evans
,
W.
, and
Keblinski
,
P.
,
2013
, “
Equilibrium and Nonequilibrium Molecular Dynamics Simulations of Thermal Conductance at Solid-Gas Interfaces
,”
Phys. Rev. E—Stat., Nonlinear, Soft Matter Phys.
,
87
(
2
), p.
022119
.10.1103/PhysRevE.87.022119
36.
Liang
,
Z.
, and
Hu
,
M.
,
2018
, “
Tutorial: Determination of Thermal Boundary Resistance by Molecular Dynamics Simulations
,”
J. Appl. Phys.
,
123
(
19
), p.
191101
.10.1063/1.5027519
37.
Merabia
,
S.
, and
Termentzidis
,
K.
,
2012
, “
Thermal Conductance at the Interface Between Crystals Using Equilibrium and Nonequilibrium Molecular Dynamics
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
86
(
9
), p.
094303
.10.1103/PhysRevB.86.094303
38.
Liang
,
Z.
,
Evans
,
W.
,
Desai
,
T.
, and
Keblinski
,
P.
,
2013
, “
Improvement of Heat Transfer Efficiency at Solid-Gas Interfaces by Self-Assembled Monolayers
,”
Appl. Phys. Lett.
,
102
(
6
), p.
061907
.10.1063/1.4792530
39.
Chalopin
,
Y.
,
Esfarjani
,
K.
,
Henry
,
A.
,
Volz
,
S.
, and
Chen
,
G.
,
2012
, “
Thermal Interface Conductance in Si/Ge Superlattices by Equilibrium Molecular Dynamics
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
85
(
19
), p.
195302
.10.1103/PhysRevB.85.195302
40.
Liang
,
Z.
, and
Keblinski
,
P.
,
2014
, “
Finite-Size Effects on Molecular Dynamics Interfacial Thermal-Resistance Predictions
,”
Phys. Rev. B
,
90
(
7
), p.
075411
.10.1103/PhysRevB.90.075411
41.
Müller-Plathe
,
F.
,
1997
, “
A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity
,”
J. Chem. Phys.
,
106
(
14
), pp.
6082
6085
.10.1063/1.473271
42.
Kundu
,
A.
,
Chaudhuri
,
A.
,
Roy
,
D.
,
Dhar
,
A.
,
Lebowitz
,
J. L.
, and
Spohn
,
H.
,
2010
, “
Heat Conduction and Phonon Localization in Disordered Harmonic Crystals
,”
Europhys. Lett.
,
90
(
4
), p.
40001
.10.1209/0295-5075/90/40001
43.
Li
,
Z.
,
Xiong
,
S.
,
Sievers
,
C.
,
Hu
,
Y.
,
Fan
,
Z.
,
Wei
,
N.
,
Bao
,
H.
,
Chen
,
S.
,
Donadio
,
D.
, and
Ala-Nissila
,
T.
,
2019
, “
Influence of Thermostatting on Nonequilibrium Molecular Dynamics Simulations of Heat Conduction in Solids
,”
J. Chem. Phys.
,
151
(
23
), p.
234105
.10.1063/1.5132543
44.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2002
, “
Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,”
Phys. Rev. B
,
65
(
14
), p.
144306
.10.1103/PhysRevB.65.144306
45.
Turney
,
J. E.
,
Landry
,
E. S.
,
McGaughey
,
A. J. H.
, and
Amon
,
C. H.
,
2009
, “
Predicting Phonon Properties and Thermal Conductivity From Anharmonic Lattice Dynamics Calculations and Molecular Dynamics Simulations
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
79
(
6
), p.
064301
.10.1103/PhysRevB.79.064301
46.
Ni
,
B.
,
Watanabe
,
T.
, and
Phillpot
,
S. R.
,
2009
, “
Thermal Transport in Polyethylene and at Polyethylene–Diamond Interfaces Investigated Using Molecular Dynamics Simulation
,”
J. Phys.: Condens. Matter
,
21
(
8
), p.
084219
.10.1088/0953-8984/21/8/084219
47.
Landry
,
E. S.
,
Hussein
,
M. I.
, and
McGaughey
,
A. J. H.
,
2008
, “
Complex Superlattice Unit Cell Designs for Reduced Thermal Conductivity
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
77
(
18
), p.
184302
.10.1103/PhysRevB.77.184302
48.
Liang
,
Z.
,
Jain
,
A.
,
McGaughey
,
A. J. H.
, and
Keblinski
,
P.
,
2015
, “
Molecular Simulations and Lattice Dynamics Determination of Stillinger-Weber GaN Thermal Conductivity
,”
J. Appl. Phys.
,
118
(
12
), p.
125104
.10.1063/1.4931673
49.
Allen
,
P. B.
,
Feldman
,
J. L.
,
Fabian
,
J.
, and
Wooten
,
F.
,
1999
, “
Diffusons, Locons and Propagons: Character of Atomic Vibrations in Amorphous Si
,”
Philos. Mag. B
,
79
(
11–12
), pp.
1715
1731
.10.1080/13642819908223054
50.
Feldman
,
J. L.
,
Kluge
,
M. D.
,
Allen
,
P. B.
, and
Wooten
,
F.
,
1993
, “
Thermal Conductivity and Localization in Glasses: Numerical Study of a Model of Amorphous Silicon
,”
Phys. Rev. B
,
48
(
17
), p.
12589
.10.1103/PhysRevB.48.12589
51.
Allen
,
P. B.
, and
Feldman
,
J. L.
,
1993
, “
Thermal Conductivity of Disordered Harmonic Solids
,”
Phys. Rev. B
,
48
(
17
), p.
12581
.10.1103/PhysRevB.48.12581
52.
Thomas
,
J. A.
,
Turney
,
J. E.
,
Iutzi
,
R. M.
,
Amon
,
C. H.
, and
McGaughey
,
A. J. H.
,
2010
, “
Predicting Phonon Dispersion Relations and Lifetimes From the Spectral Energy Density
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
81
(
8
), p.
081411
.10.1103/PhysRevB.81.081411
53.
Larkin
,
J. M.
,
Turney
,
J. E.
,
Massicotte
,
A. D.
,
Amon
,
C. H.
, and
McGaughey
,
A. J. H.
,
2014
, “
Comparison and Evaluation of Spectral Energy Methods for Predicting Phonon Properties
,”
J. Comput. Theor. Nanosci.
,
11
(
1
), pp.
249
256
.10.1166/jctn.2014.3345
54.
Ladd
,
A. J. C.
,
Moran
,
B.
, and
Hoover
,
W. G.
,
1986
, “
Lattice Thermal Conductivity: A Comparison of Molecular Dynamics and Anharmonic Lattice Dynamics
,”
Phys. Rev. B
,
34
(
8
), p.
5058
.10.1103/PhysRevB.34.5058
55.
Lukes
,
J. R.
, and
Zhong
,
H.
,
2007
, “
Thermal Conductivity of Individual Single-Wall Carbon Nanotubes
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
129
(
6
), pp.
705
716
.10.1115/1.2717242
56.
Lv
,
W.
, and
Henry
,
A.
,
2016
, “
Direct Calculation of Modal Contributions to Thermal Conductivity Via Green–Kubo Modal Analysis
,”
New J. Phys.
,
18
(
1
), p.
013028
.10.1088/1367-2630/18/1/013028
57.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2004
, “
Kapitza Conductance and Phonon Scattering at Grain Boundaries by Simulation
,”
J. Appl. Phys.
,
95
(
11
), pp.
6082
6091
.10.1063/1.1702100
58.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2002
, “
Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation
,”
Appl. Phys. Lett.
,
80
(
14
), pp.
2484
2486
.10.1063/1.1465106
59.
Hu
,
M.
,
Keblinski
,
P.
, and
Schelling
,
P. K.
,
2009
, “
Kapitza Conductance of Silicon–Amorphous Polyethylene Interfaces by Molecular Dynamics Simulations
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
79
(
10
), p.
104305
.10.1103/PhysRevB.79.104305
60.
Hu
,
L.
,
Zhang
,
L.
,
Hu
,
M.
,
Wang
,
J.-S.
,
Li
,
B.
, and
Keblinski
,
P.
,
2010
, “
Phonon Interference at Self-Assembled Monolayer Interfaces: Molecular Dynamics Simulations
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
81
(
23
), p.
235427
.10.1103/PhysRevB.81.235427
61.
Wei
,
X.
, and
Luo
,
T.
,
2019
, “
A Phonon Wave Packet Study of Thermal Energy Transport Across Functionalized Hard-Soft Interfaces
,”
J. Appl. Phys.
,
126
(
1
), p.
015301
.10.1063/1.5095775
62.
Liang
,
Z.
, and
Keblinski
,
P.
,
2016
, “
Sound Attenuation in Amorphous Silica at Frequencies Near the Boson Peak
,”
Phys. Rev. B
,
93
(
5
), p.
054205
.10.1103/PhysRevB.93.054205
63.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), p.
605
.10.1103/RevModPhys.61.605
64.
Guo
,
Y.
,
Zhang
,
Z.
,
Bescond
,
M.
,
Xiong
,
S.
,
Nomura
,
M.
, and
Volz
,
S.
,
2021
, “
Anharmonic Phonon-Phonon Scattering at the Interface Between Two Solids by Nonequilibrium Green's Function Formalism
,”
Phys. Rev. B
,
103
(
17
), p.
174306
.10.1103/PhysRevB.103.174306
65.
Chalopin
,
Y.
, and
Volz
,
S.
,
2013
, “
A Microscopic Formulation of the Phonon Transmission at the Nanoscale
,”
Appl. Phys. Lett.
,
103
(
5
), p.
051602
.10.1063/1.4816738
66.
Gordiz
,
K.
, and
Henry
,
A.
,
2015
, “
A Formalism for Calculating the Modal Contributions to Thermal Interface Conductance
,”
New J. Phys.
,
17
(
10
), p.
103002
.10.1088/1367-2630/17/10/103002
67.
Zhou
,
Y.
,
Zhang
,
X.
, and
Hu
,
M.
,
2015
, “
Quantitatively Analyzing Phonon Spectral Contribution of Thermal Conductivity Based on Nonequilibrium Molecular Dynamics Simulations. I. From Space Fourier Transform
,”
Phys. Rev. B
,
92
(
19
), p.
195204
.10.1103/PhysRevB.92.195204
68.
Zhou
,
Y.
,
Zhang
,
X.
, and
Hu
,
M.
,
2016
, “
An Excellent Candidate for Largely Reducing Interfacial Thermal Resistance: A Nano-Confined Mass Graded Interface
,”
Nanoscale
,
8
(
4
), pp.
1994
2002
.10.1039/C5NR06855J
69.
Zhou
,
Y.
, and
Hu
,
M.
,
2017
, “
Full Quantification of Frequency-Dependent Interfacial Thermal Conductance Contributed by Two- and Three-Phonon Scattering Processes From Nonequilibrium Molecular Dynamics Simulations
,”
Phys. Rev. B
,
95
(
11
), p.
115313
.10.1103/PhysRevB.95.115313
70.
Kwon
,
Y.-K.
, and
Kim
,
P.
,
2006
, “
Unusually High Thermal Conductivity in Carbon Nanotubes
,”
High Thermal Conductivity Materials
, Springer, New York, pp.
227
265
.10.1007/b106785
71.
Glassbrenner
,
C. J.
, and
Slack
,
G. A.
,
1964
, “
Thermal Conductivity of Silicon and Germanium From 3 K to the Melting Point
,”
Phys. Rev.
,
134
(
4A
), p.
A1058
.10.1103/PhysRev.134.A1058
72.
Sun
,
L.
, and
Murthy
,
J. Y.
,
2006
, “
Domain Size Effects in Molecular Dynamics Simulation of Phonon Transport in Silicon
,”
Appl. Phys. Lett.
,
89
(
17
), p.
171919
.10.1063/1.2364062
73.
Henry
,
A. S.
, and
Chen
,
G.
,
2008
, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
(
2
), pp.
141
152
.10.1166/jctn.2008.2454
74.
Li
,
R.
,
Lee
,
E.
, and
Luo
,
T.
,
2020
, “
A Unified Deep Neural Network Potential Capable of Predicting Thermal Conductivity of Silicon in Different Phases
,”
Mater. Today Phys.
,
12
, p.
100181
.10.1016/j.mtphys.2020.100181
75.
Pompe
,
G.
, and
Hegenbarth
,
E.
,
1988
, “
Thermal Conductivity of Amorphous Si at Low Temperatures
,”
Phys. Status Solidi (B)
,
147
(
1
), pp.
103
108
.10.1002/pssb.2221470109
76.
Cahill
,
D. G.
,
Fischer
,
H. E.
,
Klitsner
,
T.
,
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Conductivity of Thin Films: Measurements and Understanding
,”
J. Vac. Sci. Technol. A: Vac. Surf. Films
,
7
(
3
), pp.
1259
1266
.10.1116/1.576265
77.
Cahill
,
D. G.
,
Katiyar
,
M.
, and
Abelson
,
J. R.
,
1994
, “
Thermal Conductivity of a-Si:H Thin Films
,”
Phys. Rev. B
,
50
(
9
), p.
6077
.10.1103/PhysRevB.50.6077
78.
Zink
,
B. L.
,
Pietri
,
R.
, and
Hellman
,
F.
,
2006
, “
Thermal Conductivity and Specific Heat of Thin-Film Amorphous Silicon
,”
Phys. Rev. Lett.
,
96
(
5
), p.
055902
.10.1103/PhysRevLett.96.055902
79.
Lee
,
Y. H.
,
Biswas
,
R.
,
Soukoulis
,
C. M.
,
Wang
,
C. Z.
,
Chan
,
C. T.
, and
Ho
,
K. M.
,
1991
, “
Molecular-Dynamics Simulation of Thermal Conductivity in Amorphous Silicon
,”
Phys. Rev. B
,
43
(
8
), p.
6573
.10.1103/PhysRevB.43.6573
80.
Shenogin
,
S.
,
Bodapati
,
A.
,
Keblinski
,
P.
, and
McGaughey
,
A. J. H.
,
2009
, “
Predicting the Thermal Conductivity of Inorganic and Polymeric Glasses: The Role of Anharmonicity
,”
J. Appl. Phys.
,
105
(
3
), p.
034906
.10.1063/1.3073954
81.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
,
2006
, “
Phonon Transport in Molecular Dynamics Simulations: Formulation and Thermal Conductivity Prediction
,”
Adv. Heat Transfer
,
39
, pp.
169
255
.10.1016/S0065-2717(06)39002-8
82.
Donadio
,
D.
, and
Galli
,
G.
,
2007
, “
Thermal Conductivity of Isolated and Interacting Carbon Nanotubes: Comparing Results From Molecular Dynamics and the Boltzmann Transport Equation
,”
Phys. Rev. Lett.
,
99
(
25
), p.
255502
.10.1103/PhysRevLett.99.255502
83.
Qiu
,
B.
,
Bao
,
H.
,
Ruan
,
X.
,
Zhang
,
G.
, and
Wu
,
Y.
,
2012
, “
Molecular Dynamics Simulations of Lattice Thermal Conductivity and Spectral Phonon Mean Free Path of PbTe: Bulk and Nanostructures
,”
ASME
Paper No. HT2012-58554.10.1115/HT2012-58554
84.
Bao
,
H.
,
Qiu
,
B.
,
Zhang
,
Y.
, and
Ruan
,
X.
,
2012
, “
A First-Principles Molecular Dynamics Approach for Predicting Optical Phonon Lifetimes and Far-Infrared Reflectance of Polar Materials
,”
J. Quant. Spectrosc. Radiat. Transfer
,
113
(
13
), pp.
1683
1688
.10.1016/j.jqsrt.2012.04.018
85.
Wang
,
Y.
,
Qiu
,
B.
,
JH McGaughey
,
A.
,
Ruan
,
X.
, and
Xu
,
X.
,
2013
, “
Mode-Wise Thermal Conductivity of Bismuth Telluride
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
9
), p.
091102
.10.1115/1.4024356
86.
Feng
,
T.
,
Qiu
,
B.
, and
Ruan
,
X.
,
2015
, “
Anharmonicity and Necessity of Phonon Eigenvectors in the Phonon Normal Mode Analysis
,”
J. Appl. Phys.
,
117
(
19
), p.
195102
.10.1063/1.4921108
87.
Hu
,
M.
,
Jing
,
Y.
, and
Zhang
,
X.
,
2015
, “
Low Thermal Conductivity of Graphyne Nanotubes From Molecular Dynamics Study
,”
Phys. Rev. B
,
91
(
15
), p.
155408
.10.1103/PhysRevB.91.155408
88.
Xu
,
W.
,
Zhang
,
G.
, and
Li
,
B.
,
2015
, “
Thermal Conductivity of Penta-Graphene From Molecular Dynamics Study
,”
J. Chem. Phys.
,
143
(
15
), p.
154703
.10.1063/1.4933311
89.
Feng
,
T.
,
Zhong
,
Y.
,
Shi
,
J.
, and
Ruan
,
X.
,
2019
, “
Unexpected High Inelastic Phonon Transport Across Solid-Solid Interface: Modal Nonequilibrium Molecular Dynamics Simulations and Landauer Analysis
,”
Phys. Rev. B
,
99
(
4
), p.
045301
.10.1103/PhysRevB.99.045301
90.
Donadio
,
D.
, and
Galli
,
G.
,
2009
, “
Atomistic Simulations of Heat Transport in Silicon Nanowires
,”
Phys. Rev. Lett.
,
102
(
19
), p.
195901
.10.1103/PhysRevLett.102.195901
91.
Li
,
R.
,
Liu
,
Z.
,
Rohskopf
,
A.
,
Gordiz
,
K.
,
Henry
,
A.
,
Lee
,
E.
, and
Luo
,
T.
,
2020
, “
A Deep Neural Network Interatomic Potential for Studying Thermal Conductivity of β-Ga2O3
,”
Appl. Phys. Lett.
,
117
(
15
), p.
152102
.10.1063/5.0025051
92.
Jin
,
Z.
,
Liao
,
Q.
,
Fang
,
H.
,
Liu
,
Z.
,
Liu
,
W.
,
Ding
,
Z.
,
Luo
,
T.
, and
Yang
,
N.
,
2015
, “
A Revisit to High Thermoelectric Performance of Single-Layer MoS2
,”
Sci. Rep.
,
5
(
1
), p.
18342
.10.1038/srep18342
93.
Yang
,
N.
,
Zhang
,
G.
, and
Li
,
B.
,
2009
, “
Thermal Rectification in Asymmetric Graphene Ribbons
,”
Appl. Phys. Lett.
,
95
(
3
), p.
033107
.10.1063/1.3183587
94.
Yang
,
N.
,
Zhang
,
G.
, and
Li
,
B.
,
2008
, “
Carbon Nanocone: A Promising Thermal Rectifier
,”
Appl. Phys. Lett.
,
93
(
24
), p.
243111
.10.1063/1.3049603
95.
Mu
,
X.
,
Wang
,
L.
,
Yang
,
X.
,
Zhang
,
P.
,
To
,
A. C.
, and
Luo
,
T.
,
2015
, “
Ultra-Low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire
,”
Sci. Rep.
,
5
(
1
), p.
16697
.10.1038/srep16697
96.
He
,
Y.
,
Donadio
,
D.
, and
Galli
,
G.
,
2011
, “
Heat Transport in Amorphous Silicon: Interplay Between Morphology and Disorder
,”
Appl. Phys. Lett.
,
98
(
14
), p.
144101
.10.1063/1.3574366
97.
Larkin
,
J. M.
, and
McGaughey
,
A. J. H.
,
2014
, “
Thermal Conductivity Accumulation in Amorphous Silica and Amorphous Silicon
,”
Phys. Rev. B
,
89
(
14
), p.
144303
.10.1103/PhysRevB.89.144303
98.
Lv
,
W.
, and
Henry
,
A.
,
2016
, “
Non-Negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide
,”
Sci. Rep.
,
6
(
1
), p.
35720
.10.1038/srep35720
99.
Henry
,
A.
, and
Chen
,
G.
,
2008
, “
High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
,
101
(
23
), p.
235502
.10.1103/PhysRevLett.101.235502
100.
Shrestha
,
R.
,
Li
,
P.
,
Chatterjee
,
B.
,
Zheng
,
T.
,
Wu
,
X.
,
Liu
,
Z.
,
Luo
,
T.
,
Choi
,
S.
,
Hippalgaonkar
,
K.
, and
De Boer
,
M. P.
,
2018
, “
Crystalline Polymer Nanofibers With Ultra-High Strength and Thermal Conductivity
,”
Nat. Commun.
,
9
(
1
), p.
1664
.10.1038/s41467-018-03978-3
101.
Shen
,
S.
,
Henry
,
A.
,
Tong
,
J.
,
Zheng
,
R.
, and
Chen
,
G.
,
2010
, “
Polyethylene Nanofibres With Very High Thermal Conductivities
,”
Nat. Nanotechnol.
,
5
(
4
), pp.
251
255
.10.1038/nnano.2010.27
102.
Terao
,
T.
,
Lussetti
,
E.
, and
Müller-Plathe
,
F.
,
2007
, “
Nonequilibrium Molecular Dynamics Methods for Computing the Thermal Conductivity: Application to Amorphous Polymers
,”
Phys. Rev. E—Stat., Nonlinear, Soft Matter Phys.
,
75
(
5
), p.
057701
.10.1103/PhysRevE.75.057701
103.
Henry
,
A.
, and
Chen
,
G.
,
2009
, “
Anomalous Heat Conduction in Polyethylene Chains: Theory and Molecular Dynamics Simulations
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
79
(
14
), p.
144305
.10.1103/PhysRevB.79.144305
104.
Fermi
,
E.
,
Pasta
,
P.
,
Ulam
,
S.
, and
Tsingou
,
M.
,
1955
, “
Studies of the Nonlinear Problems
,” Los Alamos National Laboratory (LANL), Los Alamos, NM, Report No.
LA-1940
.https://www.osti.gov/servlets/purl/4376203
105.
Luo
,
T.
,
Esfarjani
,
K.
,
Shiomi
,
J.
,
Henry
,
A.
, and
Chen
,
G.
,
2011
, “
Molecular Dynamics Simulation of Thermal Energy Transport in Polydimethylsiloxane
,”
J. Appl. Phys.
,
109
(
7
), p.
074321
.10.1063/1.3569862
106.
Liu
,
J.
, and
Yang
,
R.
,
2012
, “
Length-Dependent Thermal Conductivity of Single Extended Polymer Chains
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
86
(
10
), p.
104307
.10.1103/PhysRevB.86.104307
107.
Zhang
,
T.
,
Wu
,
X.
, and
Luo
,
T.
,
2014
, “
Polymer Nanofibers With Outstanding Thermal Conductivity and Thermal Stability: Fundamental Linkage Between Molecular Characteristics and Macroscopic Thermal Properties
,”
J. Phys. Chem. C
,
118
(
36
), pp.
21148
21159
.10.1021/jp5051639
108.
Xu
,
Y.
,
Wang
,
X.
,
Zhou
,
J.
,
Song
,
B.
,
Jiang
,
Z.
,
Lee
,
E. M. Y.
,
Huberman
,
S.
,
Gleason
,
K. K.
, and
Chen
,
G.
,
2018
, “
Molecular Engineered Conjugated Polymer With High Thermal Conductivity
,”
Sci. Adv.
,
4
(
3
), p.
eaar3031
.10.1126/sciadv.aar3031
109.
Singh
,
V.
,
Bougher
,
T. L.
,
Weathers
,
A.
,
Cai
,
Y.
,
Bi
,
K.
,
Pettes
,
M. T.
,
McMenamin
,
S. A.
,
Lv
,
W.
,
Resler
,
D. P.
, and
Gattuso
,
T. R.
,
2014
, “
High Thermal Conductivity of Chain-Oriented Amorphous Polythiophene
,”
Nat. Nanotechnol.
,
9
(
5
), pp.
384
390
.10.1038/nnano.2014.44
110.
Zhang
,
T.
, and
Luo
,
T.
,
2012
, “
Morphology-Influenced Thermal Conductivity of Polyethylene Single Chains and Crystalline Fibers
,”
J. Appl. Phys.
,
112
(
9
), p.
094304
.10.1063/1.4759293
111.
Zhang
,
T.
, and
Luo
,
T.
,
2013
, “
High-Contrast, Reversible Thermal Conductivity Regulation Utilizing the Phase Transition of Polyethylene Nanofibers
,”
ACS Nano
,
7
(
9
), pp.
7592
7600
.10.1021/nn401714e
112.
Zhang
,
T.
, and
Luo
,
T.
,
2015
, “
Giant Thermal Rectification From Polyethylene Nanofiber Thermal Diodes
,”
Small
,
11
(
36
), pp.
4657
4665
.10.1002/smll.201501127
113.
Shrestha
,
R.
,
Luan
,
Y.
,
Shin
,
S.
,
Zhang
,
T.
,
Luo
,
X.
,
Lundh
,
J. S.
,
Gong
,
W.
,
Bockstaller
,
M. R.
,
Choi
,
S.
, and
Luo
,
T.
,
2019
, “
High-Contrast and Reversible Polymer Thermal Regulator by Structural Phase Transition
,”
Sci. Adv.
,
5
(
12
), p.
eaax3777
.10.1126/sciadv.aax3777
114.
Shrestha
,
R.
,
Luan
,
Y.
,
Luo
,
X.
,
Shin
,
S.
,
Zhang
,
T.
,
Smith
,
P.
,
Gong
,
W.
,
Bockstaller
,
M.
,
Luo
,
T.
, and
Chen
,
R.
,
2020
, “
Dual-Mode Solid-State Thermal Rectification
,”
Nat. Commun.
,
11
(
1
), p.
4346
.10.1038/s41467-020-18212-2
115.
Ma
,
H.
,
Aamer
,
Z.
, and
Tian
,
Z.
,
2021
, “
Ultrahigh Thermal Conductivity in Three-Dimensional Covalent Organic Frameworks
,”
Mater. Today Phys.
,
21
, p.
100536
.10.1016/j.mtphys.2021.100536
116.
Kwon
,
J.
,
Ma
,
H.
,
Giri
,
A.
,
Hopkins
,
P. E.
,
Shustova
,
N. B.
, and
Tian
,
Z.
,
2023
, “
Thermal Conductivity of Covalent-Organic Frameworks
,”
ACS Nano
,
17
(
16
), pp.
15222
15230
.10.1021/acsnano.3c03518
117.
Ma
,
H.
,
O'Donnel
,
E.
, and
Tian
,
Z.
,
2018
, “
Tunable Thermal Conductivity of π-Conjugated Two-Dimensional Polymers
,”
Nanoscale
,
10
(
29
), pp.
13924
13929
.10.1039/C8NR02994F
118.
Hu
,
R.
,
Fan
,
H.
,
Zhou
,
Y.
,
Tao
,
K.
,
Tian
,
Z.
, and
Ma
,
H.
,
2024
, “
Electrostatic Interactions Dominate Thermal Conductivity and Anisotropy in Three-Dimensional Hydrogen-Bonded Organic Frameworks
,”
Int. J. Heat Mass Transfer
,
221
, p.
125071
.10.1016/j.ijheatmasstransfer.2023.125071
119.
Wei
,
X.
, and
Luo
,
T.
,
2019
, “
Chain Length Effect on Thermal Transport in Amorphous Polymers and a Structure–Thermal Conductivity Relation
,”
Phys. Chem. Chem. Phys.
,
21
(
28
), pp.
15523
15530
.10.1039/C9CP02397F
120.
Ma
,
H.
, and
Tian
,
Z.
,
2017
, “
Effects of Polymer Topology and Morphology on Thermal Transport: A Molecular Dynamics Study of Bottlebrush Polymers
,”
Appl. Phys. Lett.
,
110
(
9
), p.
091903
.10.1063/1.4976946
121.
Zhang
,
T.
, and
Luo
,
T.
,
2016
, “
Role of Chain Morphology and Stiffness in Thermal Conductivity of Amorphous Polymers
,”
J. Phys. Chem. B
,
120
(
4
), pp.
803
812
.10.1021/acs.jpcb.5b09955
122.
Ma
,
H.
, and
Tian
,
Z.
,
2019
, “
Chain Rotation Significantly Reduces Thermal Conductivity of Single-Chain Polymers
,”
J. Mater. Res.
,
34
(
1
), pp.
126
133
.10.1557/jmr.2018.362
123.
Liu
,
J.
, and
Yang
,
R.
,
2010
, “
Tuning the Thermal Conductivity of Polymers With Mechanical Strains
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
81
(
17
), p.
174122
.10.1103/PhysRevB.81.174122
124.
Ma
,
H.
, and
Tian
,
Z.
,
2015
, “
Effects of Polymer Chain Confinement on Thermal Conductivity of Ultrathin Amorphous Polystyrene Films
,”
Appl. Phys. Lett.
,
107
(
7
), p.
073111
.10.1063/1.4929426
125.
Wei
,
X.
,
Zhang
,
T.
, and
Luo
,
T.
,
2016
, “
Chain Conformation-Dependent Thermal Conductivity of Amorphous Polymer Blends: The Impact of Inter- and Intra-Chain Interactions
,”
Phys. Chem. Chem. Phys.
,
18
(
47
), pp.
32146
32154
.10.1039/C6CP06643G
126.
Wei
,
X.
, and
Luo
,
T.
,
2018
, “
The Effect of the Block Ratio on the Thermal Conductivity of Amorphous Polyethylene–Polypropylene (PE–PP) Diblock Copolymers
,”
Phys. Chem. Chem. Phys.
,
20
(
31
), pp.
20534
20539
.10.1039/C8CP03433H
127.
English
,
T. S.
,
Duda
,
J. C.
,
Smoyer
,
J. L.
,
Jordan
,
D. A.
,
Norris
,
P. M.
, and
Zhigilei
,
L. V.
,
2012
, “
Enhancing and Tuning Phonon Transport at Vibrationally Mismatched Solid-Solid Interfaces
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
85
(
3
), p.
035438
.10.1103/PhysRevB.85.035438
128.
Ju
,
S.
,
Palpant
,
B.
, and
Chalopin
,
Y.
,
2017
, “
Adverse Effects of Polymer Coating on Heat Transport at the Solid–Liquid Interface
,”
J. Phys. Chem. C
,
121
(
25
), pp.
13474
13480
.10.1021/acs.jpcc.7b02123
129.
Shenogina
,
N.
,
Godawat
,
R.
,
Keblinski
,
P.
, and
Garde
,
S.
,
2009
, “
How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces
,”
Phys. Rev. Lett.
,
102
(
15
), p.
156101
.10.1103/PhysRevLett.102.156101
130.
Hung
,
S.-W.
,
Kikugawa
,
G.
, and
Shiomi
,
J.
,
2016
, “
Mechanism of Temperature Dependent Thermal Transport Across the Interface Between Self-Assembled Monolayer and Water
,”
J. Phys. Chem. C
,
120
(
47
), pp.
26678
26685
.10.1021/acs.jpcc.6b09516
131.
Xu
,
Z.
,
Huang
,
D.
, and
Luo
,
T.
,
2021
, “
Molecular-Level Understanding of Efficient Thermal Transport Across the Silica–Water Interface
,”
J. Phys. Chem. C
,
125
(
43
), pp.
24115
24125
.10.1021/acs.jpcc.1c06571
132.
Lee
,
E.
, and
Luo
,
T.
,
2018
, “
Thermal Transport Across Solid-Solid Interfaces Enhanced by Pre-Interface Isotope-Phonon Scattering
,”
Appl. Phys. Lett.
,
112
(
1
), p.
011603
.10.1063/1.5003827
133.
Yang
,
N.
,
Luo
,
T.
,
Esfarjani
,
K.
,
Henry
,
A.
,
Tian
,
Z.
,
Shiomi
,
J.
,
Chalopin
,
Y.
,
Li
,
B.
, and
Chen
,
G.
,
2015
, “
Thermal Interface Conductance Between Aluminum and Silicon by Molecular Dynamics Simulations
,”
J. Comput. Theor. Nanosci.
,
12
(
2
), pp.
168
174
.10.1166/jctn.2015.3710
134.
Huang
,
D.
,
Ma
,
R.
,
Zhang
,
T.
, and
Luo
,
T.
,
2018
, “
Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement Across Solid–Water Interfaces
,”
ACS Appl. Mater. Interfaces
,
10
(
33
), pp.
28159
28165
.10.1021/acsami.8b03709
135.
Zhang
,
T.
,
Gans-Forrest
,
A. R.
,
Lee
,
E.
,
Zhang
,
X.
,
Qu
,
C.
,
Pang
,
Y.
,
Sun
,
F.
, and
Luo
,
T.
,
2016
, “
Role of Hydrogen Bonds in Thermal Transport Across Hard/Soft Material Interfaces
,”
ACS Appl. Mater. Interfaces
,
8
(
48
), pp.
33326
33334
.10.1021/acsami.6b12073
136.
Wu
,
X.
, and
Luo
,
T.
,
2014
, “
The Importance of Anharmonicity in Thermal Transport Across Solid-Solid Interfaces
,”
J. Appl. Phys.
,
115
(
1
), p.
014901
.10.1063/1.4859555
137.
Luo
,
T.
, and
Lloyd
,
J. R.
,
2012
, “
Enhancement of Thermal Energy Transport Across Graphene/Graphite and Polymer Interfaces: A Molecular Dynamics Study
,”
Adv. Funct. Mater.
,
22
(
12
), pp.
2495
2502
.10.1002/adfm.201103048
138.
Stevens
,
R. J.
,
Zhigilei
,
L. V.
, and
Norris
,
P. M.
,
2007
, “
Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid–Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3977
3989
.10.1016/j.ijheatmasstransfer.2007.01.040
139.
Li
,
R.
,
Gordiz
,
K.
,
Henry
,
A.
,
Hopkins
,
P. E.
,
Lee
,
E.
, and
Luo
,
T.
,
2019
, “
Effect of Light Atoms on Thermal Transport Across Solid–Solid Interfaces
,”
Phys. Chem. Chem. Phys.
,
21
(
31
), pp.
17029
17035
.10.1039/C9CP03426A
140.
Lee
,
E.
, and
Luo
,
T.
,
2017
, “
The Role of Optical Phonons in Intermediate Layer-Mediated Thermal Transport Across Solid Interfaces
,”
Phys. Chem. Chem. Phys.
,
19
(
28
), pp.
18407
18415
.10.1039/C7CP02982A
141.
Shenogin
,
S.
,
Keblinski
,
P.
,
Bedrov
,
D.
, and
Smith
,
G. D.
,
2006
, “
Thermal Relaxation Mechanism and Role of Chemical Functionalization in Fullerene Solutions
,”
J. Chem. Phys.
,
124
(
1
), p.
014702
.10.1063/1.2140707
142.
Gordiz
,
K.
, and
Henry
,
A.
,
2015
, “
Examining the Effects of Stiffness and Mass Difference on the Thermal Interface Conductance Between Lennard-Jones Solids
,”
Sci. Rep.
,
5
(
1
), p.
18361
.10.1038/srep18361
143.
Hopkins
,
P. E.
, and
Norris
,
P. M.
,
2007
, “
Effects of Joint Vibrational States on Thermal Boundary Conductance
,”
Nanoscale Microscale Thermophys. Eng.
,
11
(
3–4
), pp.
247
257
.10.1080/15567260701715297
144.
Hida
,
S.
,
Hori
,
T.
,
Shiga
,
T.
,
Elliott
,
J.
, and
Shiomi
,
J.
,
2013
, “
Thermal Resistance and Phonon Scattering at the Interface Between Carbon Nanotube and Amorphous Polyethylene
,”
Int. J. Heat Mass Transfer
,
67
, pp.
1024
1029
.10.1016/j.ijheatmasstransfer.2013.08.068
145.
Seyf
,
H. R.
,
Gordiz
,
K.
,
DeAngelis
,
F.
, and
Henry
,
A.
,
2019
, “
Using Green-Kubo Modal Analysis (GKMA) and Interface Conductance Modal Analysis (ICMA) to Study Phonon Transport With Molecular Dynamics
,”
J. Appl. Phys.
,
125
(
8
), p.
081101
.10.1063/1.5081722
146.
Wei
,
X.
,
Zhang
,
T.
, and
Luo
,
T.
,
2017
, “
Thermal Energy Transport Across Hard–Soft Interfaces
,”
ACS Energy Lett.
,
2
(
10
), pp.
2283
2292
.10.1021/acsenergylett.7b00570
147.
Li
,
R.
,
Lee
,
E.
, and
Luo
,
T.
,
2020
, “
Pre-Interface Scattering Influenced Interfacial Thermal Transport Across Solid Interfaces
,”
Nanoscale Energy Transport: Emerging Phenomena, Methods and Applications
,
IOP Publishing
,
Bristol, UK
, pp.
1
3
.
148.
Sääskilahti
,
K.
,
Oksanen
,
J.
,
Tulkki
,
J.
, and
Volz
,
S.
,
2014
, “
Role of Anharmonic Phonon Scattering in the Spectrally Decomposed Thermal Conductance at Planar Interfaces
,”
Phys. Rev. B
,
90
(
13
), p.
134312
.10.1103/PhysRevB.90.134312
149.
Xu
,
Y.
,
Cao
,
B.-Y.
, and
Zhou
,
Y.
,
2024
, “
Near-Interface Effects on Interfacial Phonon Transport: Competition Between Phonon-Phonon Interference and Phonon-Phonon Scattering
,”
Int. J. Heat Mass Transfer
,
232
, p.
125943
.10.1016/j.ijheatmasstransfer.2024.125943
150.
Xu
,
Y.
,
Yang
,
L.
, and
Zhou
,
Y.
,
2022
, “
The Interfacial Thermal Conductance Spectrum in Nonequilibrium Molecular Dynamics Simulations Considering Anharmonicity, Asymmetry and Quantum Effects
,”
Phys. Chem. Chem. Phys.
,
24
(
39
), pp.
24503
24513
.10.1039/D2CP03081K
151.
Xu
,
Y.
, and
Zhou
,
Y.
,
2024
, “
Metric for Quantifying Elastic and Inelastic Thermal Transport at Interfaces
,”
Phys. Rev. B
,
110
(
11
), p.
115305
.10.1103/PhysRevB.110.115305
152.
Gordiz
,
K.
, and
Henry
,
A.
,
2016
, “
Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration
,”
Sci. Rep.
,
6
(
1
), p.
23139
.10.1038/srep23139
153.
Gordiz
,
K.
, and
Henry
,
A.
,
2016
, “
Phonon Transport at Interfaces: Determining the Correct Modes of Vibration
,”
J. Appl. Phys.
,
119
(
1
), p.
015101
.10.1063/1.4939207
154.
Cheng
,
Z.
,
Li
,
R.
,
Yan
,
X.
,
Jernigan
,
G.
,
Shi
,
J.
,
Liao
,
M. E.
,
Hines
,
N. J.
,
Gadre
,
C. A.
,
Idrobo
,
J. C.
, and
Lee
,
E.
,
2021
, “
Experimental Observation of Localized Interfacial Phonon Modes
,”
Nat. Commun.
,
12
(
1
), p.
6901
.10.1038/s41467-021-27250-3
155.
Hu
,
M.
,
Keblinski
,
P.
,
Wang
,
J.-S.
, and
Raravikar
,
N.
,
2008
, “
Interfacial Thermal Conductance Between Silicon and a Vertical Carbon Nanotube
,”
J. Appl. Phys.
,
104
(
8
), p.
083503
.10.1063/1.3000441
156.
Bao
,
H.
,
Shao
,
C.
,
Luo
,
S.
, and
Hu
,
M.
,
2014
, “
Enhancement of Interfacial Thermal Transport by Carbon Nanotube-Graphene Junction
,”
J. Appl. Phys.
,
115
(
5
), p.
053524
.10.1063/1.4864221
157.
Bagri
,
A.
,
Kim
,
S.-P.
,
Ruoff
,
R. S.
, and
Shenoy
,
V. B.
,
2011
, “
Thermal Transport Across Twin Grain Boundaries in Polycrystalline Graphene From Nonequilibrium Molecular Dynamics Simulations
,”
Nano Lett.
,
11
(
9
), pp.
3917
3921
.10.1021/nl202118d
158.
Yeandel
,
S. R.
,
Molinari
,
M.
, and
Parker
,
S. C.
,
2018
, “
The Impact of Tilt Grain Boundaries on the Thermal Transport in Perovskite SrTiO3 Layered Nanostructures. A Computational Study
,”
Nanoscale
,
10
(
31
), pp.
15010
15022
.10.1039/C8NR02234H
159.
Li
,
R.
,
Hussain
,
K.
,
Liao
,
M. E.
,
Huynh
,
K.
,
Hoque
,
M. S. B.
,
Wyant
,
S.
,
Koh
,
Y. R.
,
Xu
,
Z.
,
Wang
,
Y.
, and
Luccioni
,
D. P.
,
2024
, “
Enhanced Thermal Boundary Conductance Across GaN/SiC Interfaces With AlN Transition Layers
,”
ACS Appl. Mater. Interfaces
,
16
(
6
), pp.
8109
8118
.10.1021/acsami.3c16905
160.
Luo
,
T.
, and
Lloyd
,
J. R.
,
2010
, “
Non-Equilibrium Molecular Dynamics Study of Thermal Energy Transport in Au–SAM–Au Junctions
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
1
11
.10.1016/j.ijheatmasstransfer.2009.10.033
161.
Majumdar
,
A.
, and
Reddy
,
P.
,
2004
, “
Role of Electron–Phonon Coupling in Thermal Conductance of Metal–Nonmetal Interfaces
,”
Appl. Phys. Lett.
,
84
(
23
), pp.
4768
4770
.10.1063/1.1758301
162.
Wang
,
Y.
,
Ruan
,
X.
, and
Roy
,
A. K.
,
2012
, “
Two-Temperature Nonequilibrium Molecular Dynamics Simulation of Thermal Transport Across Metal-Nonmetal Interfaces
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
85
(
20
), p.
205311
.10.1103/PhysRevB.85.205311
163.
Lu
,
Z.
,
Wang
,
Y.
, and
Ruan
,
X.
,
2016
, “
Metal/Dielectric Thermal Interfacial Transport Considering Cross-Interface Electron-Phonon Coupling: Theory, Two-Temperature Molecular Dynamics, and Thermal Circuit
,”
Phys. Rev. B
,
93
(
6
), p.
064302
.10.1103/PhysRevB.93.064302
164.
Lu
,
Z.
,
Wang
,
Y.
, and
Ruan
,
X.
,
2018
, “
The Critical Particle Size for Enhancing Thermal Conductivity in Metal Nanoparticle-Polymer Composites
,”
J. Appl. Phys.
,
123
(
7
), p.
074302
.10.1063/1.5014987
165.
Wang
,
Z.
, and
Ruan
,
X.
,
2017
, “
On the Domain Size Effect of Thermal Conductivities From Equilibrium and Nonequilibrium Molecular Dynamics Simulations
,”
J. Appl. Phys.
,
121
(
4
), p.
044301
.10.1063/1.4974884
166.
Dong
,
H.
,
Xiong
,
S.
,
Fan
,
Z.
,
Qian
,
P.
,
Su
,
Y.
, and
Ala-Nissila
,
T.
,
2021
, “
Interpretation of Apparent Thermal Conductivity in Finite Systems From Equilibrium Molecular Dynamics Simulations
,”
Phys. Rev. B
,
103
(
3
), p.
035417
.10.1103/PhysRevB.103.035417
167.
Dong
,
H.
,
Fan
,
Z.
,
Shi
,
L.
,
Harju
,
A.
, and
Ala-Nissila
,
T.
,
2018
, “
Equivalence of the Equilibrium and the Nonequilibrium Molecular Dynamics Methods for Thermal Conductivity Calculations: From Bulk to Nanowire Silicon
,”
Phys. Rev. B
,
97
(
9
), p.
094305
.10.1103/PhysRevB.97.094305
168.
Zhang
,
G.
, and
Li
,
B.
,
2005
, “
Thermal Conductivity of Nanotubes Revisited: Effects of Chirality, Isotope Impurity, Tube Length, and Temperature
,”
J. Chem. Phys.
,
123
(
11
), p.
114714
.10.1063/1.2036967
169.
Wei
,
X.
,
Wang
,
Z.
,
Tian
,
Z.
, and
Luo
,
T.
,
2021
, “
Thermal Transport in Polymers: A Review
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
7
), p.
072101
.10.1115/1.4050557
170.
Feng
,
T.
,
He
,
J.
,
Rai
,
A.
,
Hun
,
D.
,
Liu
,
J.
, and
Shrestha
,
S. S.
,
2020
, “
Size Effects in the Thermal Conductivity of Amorphous Polymers
,”
Phys. Rev. Appl.
,
14
(
4
), p.
044023
.10.1103/PhysRevApplied.14.044023
171.
Volz
,
S. G.
, and
Chen
,
G.
,
1999
, “
Molecular Dynamics Simulation of Thermal Conductivity of Silicon Nanowires
,”
Appl. Phys. Lett.
,
75
(
14
), pp.
2056
2058
.10.1063/1.124914
172.
Liang
,
L. H.
, and
Li
,
B.
,
2006
, “
Size-Dependent Thermal Conductivity of Nanoscale Semiconducting Systems
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
73
(
15
), p.
153303
.10.1103/PhysRevB.73.153303
173.
Chen
,
J.
,
Zhang
,
G.
, and
Li
,
B.
,
2011
, “
A Universal Gauge for Thermal Conductivity of Silicon Nanowires With Different Cross Sectional Geometries
,”
J. Chem. Phys.
,
135
(
20
), p.
204705
.10.1063/1.3663386
174.
Chen
,
J.
,
Zhang
,
G.
, and
Li
,
B.
,
2011
, “
Phonon Coherent Resonance and Its Effect on Thermal Transport in Core-Shell Nanowires
,”
J. Chem. Phys.
,
135
(
10
), p.
104508
.10.1063/1.3637044
175.
Guo
,
Z.
,
Zhang
,
D.
, and
Gong
,
X.-G.
,
2009
, “
Thermal Conductivity of Graphene Nanoribbons
,”
Appl. Phys. Lett.
,
95
(
16
), p.
163103
.10.1063/1.3246155
176.
Chen
,
J.
,
Zhang
,
G.
, and
Li
,
B.
,
2013
, “
Substrate Coupling Suppresses Size Dependence of Thermal Conductivity in Supported Graphene
,”
Nanoscale
,
5
(
2
), pp.
532
536
.10.1039/C2NR32949B
177.
Su
,
R.
, and
Zhang
,
X.
,
2018
, “
Size Effect of Thermal Conductivity in Monolayer Graphene
,”
Appl. Therm. Eng.
,
144
, pp.
488
494
.10.1016/j.applthermaleng.2018.08.062
178.
Barbarino
,
G.
,
Melis
,
C.
, and
Colombo
,
L.
,
2015
, “
Intrinsic Thermal Conductivity in Monolayer Graphene Is Ultimately Upper Limited: A Direct Estimation by Atomistic Simulations
,”
Phys. Rev. B
,
91
(
3
), p.
035416
.10.1103/PhysRevB.91.035416
179.
Zhong
,
W.-R.
,
Zhang
,
M.-P.
,
Ai
,
B.-Q.
, and
Zheng
,
D.-Q.
,
2011
, “
Chirality and Thickness-Dependent Thermal Conductivity of Few-Layer Graphene: A Molecular Dynamics Study
,”
Appl. Phys. Lett.
,
98
(
11
), p.
113107
.10.1063/1.3567415
180.
Savin
,
A. V.
,
Kivshar
,
Y. S.
, and
Hu
,
B.
,
2010
, “
Suppression of Thermal Conductivity in Graphene Nanoribbons With Rough Edges
,”
Phys. Rev. B—Condens. Matter Mater. Phys.
,
82
(
19
), p.
195422
.10.1103/PhysRevB.82.195422
181.
Wang
,
Y.
,
Qiu
,
B.
, and
Ruan
,
X.
,
2012
, “
Edge Effect on Thermal Transport in Graphene Nanoribbons: A Phonon Localization Mechanism Beyond Edge Roughness Scattering
,”
Appl. Phys. Lett.
,
101
(
1
), p.
013101
.10.1063/1.4732155
182.
Evans
,
W. J.
,
Hu
,
L.
, and
Keblinski
,
P.
,
2010
, “
Thermal Conductivity of Graphene Ribbons From Equilibrium Molecular Dynamics: Effect of Ribbon Width, Edge Roughness, and Hydrogen Termination
,”
Appl. Phys. Lett.
,
96
(
20
), p.
203112
.10.1063/1.3435465
183.
Lloyd
,
J. R.
, and
Luo
,
T.
,
2011
,
Handbook of Molecular Dynamics Potential Functions
,
Begell House
, New York.
184.
Luo
,
T.
, and
Chen
,
G.
,
2013
, “
Nanoscale Heat Transfer—From Computation to Experiment
,”
Phys. Chem. Chem. Phys.
,
15
(
10
), pp.
3389
3412
.10.1039/c2cp43771f
185.
Behler
,
J.
, and
Parrinello
,
M.
,
2007
, “
Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
,”
Phys. Rev. Lett.
,
98
(
14
), p.
146401
.10.1103/PhysRevLett.98.146401
186.
Blank
,
T. B.
,
Brown
,
S. D.
,
Calhoun
,
A. W.
, and
Doren
,
D. J.
,
1995
, “
Neural Network Models of Potential Energy Surfaces
,”
J. Chem. Phys.
,
103
(
10
), pp.
4129
4137
.10.1063/1.469597
187.
Korotaev
,
P.
,
Novoselov
,
I.
,
Yanilkin
,
A.
, and
Shapeev
,
A.
,
2019
, “
Accessing Thermal Conductivity of Complex Compounds by Machine Learning Interatomic Potentials
,”
Phys. Rev. B
,
100
(
14
), p.
144308
.10.1103/PhysRevB.100.144308
188.
Mortazavi
,
B.
,
Podryabinkin
,
E. V.
,
Novikov
,
I. S.
,
Roche
,
S.
,
Rabczuk
,
T.
,
Zhuang
,
X.
, and
Shapeev
,
A. V.
,
2020
, “
Efficient Machine-Learning Based Interatomic Potentialsfor Exploring Thermal Conductivity in Two-Dimensional Materials
,”
J. Phys.: Mater.
,
3
(
2
), p.
02 LT02
.10.1088/2515-7639/ab7cbb
189.
Liu
,
Y.-B.
,
Yang
,
J.-Y.
,
Xin
,
G.-M.
,
Liu
,
L.-H.
,
Csányi
,
G.
, and
Cao
,
B.-Y.
,
2020
, “
Machine Learning Interatomic Potential Developed for Molecular Simulations on Thermal Properties of β-Ga2O3
,”
J. Chem. Phys.
,
153
(
14
), p.
144501
.10.1063/5.0027643
190.
Babaei
,
H.
,
Guo
,
R.
,
Hashemi
,
A.
, and
Lee
,
S.
,
2019
, “
Machine-Learning-Based Interatomic Potential for Phonon Transport in Perfect Crystalline Si and Crystalline Si With Vacancies
,”
Phys. Rev. Mater.
,
3
(
7
), p.
074603
.10.1103/PhysRevMaterials.3.074603
191.
Qian
,
X.
,
Peng
,
S.
,
Li
,
X.
,
Wei
,
Y.
, and
Yang
,
R.
,
2019
, “
Thermal Conductivity Modeling Using Machine Learning Potentials: Application to Crystalline and Amorphous Silicon
,”
Mater. Today Phys.
,
10
, p.
100140
.10.1016/j.mtphys.2019.100140
192.
Zhang
,
C.
, and
Sun
,
Q.
,
2019
, “
Gaussian Approximation Potential for Studying the Thermal Conductivity of Silicene
,”
J. Appl. Phys.
,
126
(
10
), p.
105103
.10.1063/1.5119281
193.
Behler
,
J.
,
2021
, “
Four Generations of High-Dimensional Neural Network Potentials
,”
Chem. Rev.
,
121
(
16
), pp.
10037
10072
.10.1021/acs.chemrev.0c00868
194.
Ko
,
T. W.
,
Finkler
,
J. A.
,
Goedecker
,
S.
, and
Behler
,
J.
,
2021
, “
A Fourth-Generation High-Dimensional Neural Network Potential With Accurate Electrostatics Including Non-Local Charge Transfer
,”
Nat. Commun.
,
12
(
1
), p.
398
.10.1038/s41467-020-20427-2
195.
Ko
,
T. W.
,
Finkler
,
J. A.
,
Goedecker
,
S.
, and
Behler
,
J.
,
2021
, “
General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer
,”
Acc. Chem. Res.
,
54
(
4
), pp.
808
817
.10.1021/acs.accounts.0c00689
196.
Kocer
,
E.
,
Ko
,
T. W.
, and
Behler
,
J.
,
2022
, “
Neural Network Potentials: A Concise Overview of Methods
,”
Annu. Rev. Phys. Chem.
,
73
(
1
), pp.
163
186
.10.1146/annurev-physchem-082720-034254
197.
Behler
,
J.
,
2011
, “
Atom-Centered Symmetry Functions for Constructing High-Dimensional Neural Network Potentials
,”
J. Chem. Phys.
,
134
(
7
), p.
074106
.10.1063/1.3553717
198.
Zhang
,
L.
,
Lin
,
D.-Y.
,
Wang
,
H.
,
Car
,
R.
, and
Weinan
,
E.
,
2019
, “
Active Learning of Uniformly Accurate Interatomic Potentials for Materials Simulation
,”
Phys. Rev. Mater.
,
3
(
2
), p.
023804
.10.1103/PhysRevMaterials.3.023804
199.
Loeffler
,
T. D.
,
Manna
,
S.
,
Patra
,
T. K.
,
Chan
,
H.
,
Narayanan
,
B.
, and
Sankaranarayanan
,
S.
,
2020
, “
Active Learning a Neural Network Model for Gold Clusters & Bulk From Sparse First Principles Training Data
,”
ChemCatChem
,
12
(
19
), pp.
4796
4806
.10.1002/cctc.202000774
200.
Schran
,
C.
,
Behler
,
J.
, and
Marx
,
D.
,
2019
, “
Automated Fitting of Neural Network Potentials at Coupled Cluster Accuracy: Protonated Water Clusters as Testing Ground
,”
J. Chem. Theory Comput.
,
16
(
1
), pp.
88
99
.10.1021/acs.jctc.9b00805
201.
Lin
,
Q.
,
Zhang
,
L.
,
Zhang
,
Y.
, and
Jiang
,
B.
,
2021
, “
Searching Configurations in Uncertainty Space: Active Learning of High-Dimensional Neural Network Reactive Potentials
,”
J. Chem. Theory Comput.
,
17
(
5
), pp.
2691
2701
.10.1021/acs.jctc.1c00166
202.
Sivaraman
,
G.
,
Krishnamoorthy
,
A. N.
,
Baur
,
M.
,
Holm
,
C.
,
Stan
,
M.
,
Csányi
,
G.
,
Benmore
,
C.
, and
Vázquez-Mayagoitia
,
Á.
,
2020
, “
Machine-Learned Interatomic Potentials by Active Learning: Amorphous and Liquid Hafnium Dioxide
,”
NPJ Comput. Mater.
,
6
(
1
), p.
104
.10.1038/s41524-020-00367-7
203.
Lindsey
,
R. K.
,
Fried
,
L. E.
,
Goldman
,
N.
, and
Bastea
,
S.
,
2020
, “
Active Learning for Robust, High-Complexity Reactive Atomistic Simulations
,”
J. Chem. Phys.
,
153
(
13
), p.
134117
.10.1063/5.0021965
204.
Unke
,
O. T.
, and
Meuwly
,
M.
,
2019
, “
PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges
,”
J. Chem. Theory Comput.
,
15
(
6
), pp.
3678
3693
.10.1021/acs.jctc.9b00181
205.
Yao
,
K.
,
Herr
,
J. E.
,
Toth
,
D. W.
,
Mckintyre
,
R.
, and
Parkhill
,
J.
,
2018
, “
The TensorMol-0.1 Model Chemistry: A Neural Network Augmented With Long-Range Physics
,”
Chem. Sci.
,
9
(
8
), pp.
2261
2269
.10.1039/C7SC04934J
206.
Eckhoff
,
M.
, and
Behler
,
J.
,
2021
, “
High-Dimensional Neural Network Potentials for Magnetic Systems Using Spin-Dependent Atom-Centered Symmetry Functions
,”
NPJ Comput. Mater.
,
7
(
1
), p.
170
.10.1038/s41524-021-00636-z
207.
Gastegger
,
M.
,
Schütt
,
K. T.
, and
Müller
,
K.-R.
,
2021
, “
Machine Learning of Solvent Effects on Molecular Spectra and Reactions
,”
Chem. Sci.
,
12
(
34
), pp.
11473
11483
.10.1039/D1SC02742E
208.
Kim
,
S.
,
Xu
,
J.
,
Shang
,
W.
,
Xu
,
Z.
,
Lee
,
E.
, and
Luo
,
T.
,
2024
, “
A Review on Machine Learning-Guided Design of Energy Materials
,”
Prog. Energy
, 6, p.
042005
.10.1088/2516-1083/ad7220
209.
Ma
,
R.
,
Zhang
,
H.
, and
Luo
,
T.
,
2022
, “
Exploring High Thermal Conductivity Amorphous Polymers Using Reinforcement Learning
,”
ACS Appl. Mater. Interfaces
,
14
(
13
), pp.
15587
15598
.10.1021/acsami.1c23610
210.
Liu
,
Z.
,
Jiang
,
M.
, and
Luo
,
T.
,
2020
, “
Leverage Electron Properties to Predict Phonon Properties Via Transfer Learning for Semiconductors
,”
Sci. Adv.
,
6
(
45
), p.
eabd1356
.10.1126/sciadv.abd1356
211.
Huang
,
X.
,
Ma
,
S.
,
Zhao
,
C. Y.
,
Wang
,
H.
, and
Ju
,
S.
,
2023
, “
Exploring High Thermal Conductivity Polymers Via Interpretable Machine Learning With Physical Descriptors
,”
NPJ Comput. Mater.
,
9
(
1
), p.
191
.10.1038/s41524-023-01154-w
212.
Qin
,
G.
,
Wei
,
Y.
,
Yu
,
L.
,
Xu
,
J.
,
Ojih
,
J.
,
Rodriguez
,
A. D.
,
Wang
,
H.
,
Qin
,
Z.
, and
Hu
,
M.
,
2023
, “
Predicting Lattice Thermal Conductivity From Fundamental Material Properties Using Machine Learning Techniques
,”
J. Mater. Chem. A Mater.
,
11
(
11
), pp.
5801
5810
.10.1039/D2TA08721A
213.
Rodriguez
,
A.
,
Lin
,
C.
,
Shen
,
C.
,
Yuan
,
K.
,
Al-Fahdi
,
M.
,
Zhang
,
X.
,
Zhang
,
H.
, and
Hu
,
M.
,
2023
, “
Unlocking Phonon Properties of a Large and Diverse Set of Cubic Crystals by Indirect Bottom-Up Machine Learning Approach
,”
Commun. Mater.
,
4
(
1
), p.
61
.10.1038/s43246-023-00390-3
214.
Novick
,
A. G.
,
Cai
,
D.
,
Nguyen
,
Q.
,
Garnett
,
R.
,
Adams
,
R. P.
, and
Toberer
,
E.
,
2024
, “
Probabilistic Prediction of Material Stability: Integrating Convex Hulls Into Active Learning
,”
Mater. Horiz.
, 11, pp.
5381
5393
.10.1039/d4mh00432a
215.
Lortaraprasert
,
C.
, and
Shiomi
,
J.
,
2022
, “
Robust Combined Modeling of Crystalline and Amorphous Silicon Grain Boundary Conductance by Machine Learning
,”
NPJ Comput. Mater.
,
8
(
1
), p.
219
.10.1038/s41524-022-00898-1
216.
Hu
,
R.
,
Iwamoto
,
S.
,
Feng
,
L.
,
Ju
,
S.
,
Hu
,
S.
,
Ohnishi
,
M.
,
Nagai
,
N.
,
Hirakawa
,
K.
, and
Shiomi
,
J.
,
2020
, “
Machine-Learning-Optimized Aperiodic Superlattice Minimizes Coherent Phonon Heat Conduction
,”
Phys. Rev. X
,
10
(
2
), p.
021050
.10.1103/PhysRevX.10.021050
217.
Wu
,
S.
,
Kondo
,
Y.
,
Kakimoto
,
M.
,
Yang
,
B.
,
Yamada
,
H.
,
Kuwajima
,
I.
,
Lambard
,
G.
,
Hongo
,
K.
,
Xu
,
Y.
, and
Shiomi
,
J.
,
2019
, “
Machine-Learning-Assisted Discovery of Polymers With High Thermal Conductivity Using a Molecular Design Algorithm
,”
NPJ Comput. Mater.
,
5
(
1
), p.
66
.10.1038/s41524-019-0203-2
218.
Ju
,
S.
,
Yoshida
,
R.
,
Liu
,
C.
,
Wu
,
S.
,
Hongo
,
K.
,
Tadano
,
T.
, and
Shiomi
,
J.
,
2021
, “
Exploring Diamondlike Lattice Thermal Conductivity Crystals Via Feature-Based Transfer Learning
,”
Phys. Rev. Mater.
,
5
(
5
), p.
053801
.10.1103/PhysRevMaterials.5.053801
219.
Ma
,
R.
, and
Luo
,
T.
,
2020
, “
PI1M: A Benchmark Database for Polymer Informatics
,”
J. Chem. Inf. Model.
,
60
(
10
), pp.
4684
4690
.10.1021/acs.jcim.0c00726
220.
Ma
,
R.
,
Zhang
,
H.
,
Xu
,
J.
,
Sun
,
L.
,
Hayashi
,
Y.
,
Yoshida
,
R.
,
Shiomi
,
J.
,
Wang
,
J.
, and
Luo
,
T.
,
2022
, “
Machine Learning-Assisted Exploration of Thermally Conductive Polymers Based on High-Throughput Molecular Dynamics Simulations
,”
Mater. Today Phys.
,
28
, p.
100850
.10.1016/j.mtphys.2022.100850
221.
Xu
,
J.
, and
Luo
,
T.
,
2024
, “
Unlocking Enhanced Thermal Conductivity in Polymer Blends Through Active Learning
,”
NPJ Comput. Mater.
,
10
(
1
), p.
74
.10.1038/s41524-024-01261-2
222.
Liu
,
Z.
,
Jiang
,
M.
, and
Luo
,
T.
,
2022
, “
Leveraging Low-Fidelity Data to Improve Machine Learning of Sparse High-Fidelity Thermal Conductivity Data Via Transfer Learning
,”
Mater. Today Phys.
,
28
, p.
100868
.10.1016/j.mtphys.2022.100868
223.
Moon
,
J.
,
Lindsay
,
L.
, and
Egami
,
T.
,
2023
, “
Atomic Dynamics in Fluids: Normal Mode Analysis Revisited
,”
Phys. Rev. E
,
108
(
1
), p.
014601
.10.1103/PhysRevE.108.014601
224.
Moon
,
J.
,
Thébaud
,
S.
,
Lindsay
,
L.
, and
Egami
,
T.
,
2024
, “
Normal Mode Description of Phases of Matter: Application to Heat Capacity
,”
Phys. Rev. Res.
,
6
(
1
), p.
013206
.10.1103/PhysRevResearch.6.013206
225.
Moon
,
J.
, and
Tian
,
Z.
,
2024
, “
Crystal-Like Thermal Transport in Amorphous Carbon
,” preprint arXiv:2405.07298.
You do not currently have access to this content.