Abstract

This study investigates the phenomenon of vortex shedding and the heat transfer performance of bluff bodies, including smooth and sharp-edged cylinders. The examined geometries include square, triangular, hexagonal, and bullet-shaped bodies. The results are compared with a smooth circular cylinder standardizing the hydraulic diameter (Dh) across all bluff bodies and maintaining a Reynolds number within the range of 100 ⩽ Re ⩽ 200. The thermofluidic results are carefully examined and compared to determine the optimal conditions for maximum heat transfer rates, as measured by the Nusselt number. It is found that the Strouhal number, and thus the vortex shedding frequency, of cylinders with smooth surfaces differs significantly from those with sharp edges. It is demonstrated that hexagonal cylinders have up to 33% higher St than other geometries. Due to the flow dynamics in the wake of the cylinders, the heat transfer rates are lowest in square geometry and highest in circular geometry. Based on the analysis, bluff bodies can be classified into two primary groups: (i) bluff bodies with up to four edges are classified as “nonsmooth bluff bodies,” and (ii) those with six or more edges behave similarly to “smooth surface cylinders.”

References

1.
Cha'o-Kuang
,
C.
,
King-Leung
,
W.
, and
Ming-Shaw
,
L.
,
1989
, “
Finite Element Solution of Time-Dependent Flow and Heat-Transfer Characteristics Around a Circular Cylinder
,”
Comput. Struct.
,
33
(
3
), pp.
771
779
.10.1016/0045-7949(89)90251-4
2.
Varaprasad Patnaik
,
B. S.
,
Aswatha Narayana
,
P. A.
, and
Seetharamu
,
K. N.
,
1999
, “
Numerical Simulation of Vortex Shedding Past a Circular Cylinder Under the Influence of Buoyancy
,”
Int. J. Heat Mass Transfer
,
42
(
18
), pp.
3495
3507
.10.1016/S0017-9310(98)00373-1
3.
Nakamura
,
H.
, and
Igarashi
,
T.
,
2004
, “
Heat Transfer in Separated Flow Behind a Circular Cylinder for Reynolds Numbers From 120 to 30 000. (2nd Report, Unsteady and Three-Dimensional Characteristics)
,”
JSME Int. J., Ser. B: Fluids Therm. Eng.
,
47
(
3
), pp.
622
630
.10.1299/jsmeb.47.622
4.
Baranyi
,
L.
,
Szabó
,
S.
,
Bolló
,
B.
, and
Bordás
,
R.
,
2009
, “
Analysis of Low Reynolds Number Flow Around a Heated Circular Cylinder
,”
J. Mech. Sci. Technol.
,
23
(
7
), pp.
1829
1834
.10.1007/s12206-009-0610-2
5.
Harimi
,
I.
, and
Saghafian
,
M.
,
2012
, “
Numerical Simulation of Fluid Flow and Forced Convection Heat Transfer From Tandem Circular Cylinders Using Overset Grid Method
,”
J. Fluids Struct.
,
28
, pp.
309
327
.10.1016/j.jfluidstructs.2011.12.006
6.
Derakhshandeh
,
J. F.
, and
Gharib
,
N.
,
2021
, “
Numerical Investigations on the Flow Control Over Bumped Surface Circular Cylinders
,”
Ocean Eng.
,
240
, p.
109943
.10.1016/j.oceaneng.2021.109943
7.
Zhang
,
Z.
,
Ji
,
C.
,
Xu
,
D.
,
Zhu
,
H.
,
Derakhshandeh
,
J. F.
, and
Chen
,
W.
,
2022
, “
Effect of Yaw Angle on Vibration Mode Transition and Wake Structure of a Near-Wall Flexible Cylinder
,”
Phys. Fluids
,
34
(
7
), p.
077106
.10.1063/5.0096149
8.
Derakhshandeh
,
J. F.
,
Ghorbani Tari
,
Z.
, and
Gharib
,
N.
,
2021
, “
Thermo-Fluids Effects of a Grooved Circular Cylinder in Laminar Flow Regimes
,”
Int. Commun. Heat Mass Transfer
,
124
, pp.
105272
105272
.10.1016/j.icheatmasstransfer.2021.105272
9.
Igarashi
,
T.
,
1986
, “
Local Heat Transfer From a Square Prism to an Airstream
,”
Int. J. Heat Mass Transfer
,
29
(
5
), pp.
777
784
.10.1016/0017-9310(86)90129-8
10.
Tatsutani
,
K.
,
Devarakonda
,
R.
, and
Humphrey
,
J. A. C.
,
1993
, “
Unsteady Flow and Heat Transfer for Cylinder Pairs in a Channel
,”
Int. J. Heat Mass Transfer
,
36
(
13
), pp.
3311
3328
.10.1016/0017-9310(93)90013-V
11.
Bhattacharyya
,
S.
, and
Mahapatra
,
S.
,
2005
, “
Vortex Shedding Around a Heated Square Cylinder Under the Influence of Buoyancy
,”
Heat Mass Transfer
,
41
(
9
), pp.
824
833
.10.1007/s00231-005-0626-9
12.
Sarkar
,
S.
,
Dalal
,
A.
, and
Biswas
,
G.
,
2010
, “
Mixed Convective Heat Transfer From Two Identical Square Cylinders in Cross Flow at Re = 100
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2628
2642
.10.1016/j.ijheatmasstransfer.2010.02.053
13.
Khan
,
M. A.
,
Anwer
,
S. F.
,
Khan
,
S. A.
, and
Hasan
,
N.
,
2020
, “
Hydrodynamic and Heat Transfer Characteristics of Vortex- Induced Vibration of Square Cylinder With Various Flow Approach Angle
,”
Int. J. Therm. Sci.
,
156
, pp.
106454
106454
.10.1016/j.ijthermalsci.2020.106454
14.
Masood
,
S.
,
Khan
,
M. A.
,
Anwer
,
S. F.
,
Hasan
,
N.
, and
Ali
,
R.
,
2023
, “
Effect of Pulsatile Flow on Hydrodynamic Characteristics of Vortex Induced Vibration of Square Cylinder
,”
Ocean Eng.
,
289
(
P2
), pp.
116290
116290
.10.1016/j.oceaneng.2023.116290
15.
Farhadi
,
M.
,
Sedighi
,
K.
, and
Mohsenzadeh Korayem
,
A.
,
2010
, “
Effect of Wall Proximity on Forced Convection in a Plane Channel With a Built-in Triangular Cylinder
,”
Int. J. Therm. Sci.
,
49
(
6
), pp.
1010
1018
.10.1016/j.ijthermalsci.2009.12.013
16.
Srikanth
,
S.
,
Dhiman
,
A. K.
, and
Bijjam
,
S.
,
2010
, “
Confined Flow and Heat Transfer Across a Triangular Cylinder in a Channel
,”
Int. J. Therm. Sci.
,
49
(
11
), pp.
2191
2200
.10.1016/j.ijthermalsci.2010.06.010
17.
Altaç
,
Z.
,
Sert
,
Z.
,
Mahir
,
N.
, and
Timuralp
,
Ç.
,
2019
, “
Mixed Convection Heat Transfer From a Triangular Cylinder Subjected to Upward Cross Flow
,”
Int. J. Therm. Sci.
,
137
, pp.
75
85
.10.1016/j.ijthermalsci.2018.11.010
18.
Dhiman
,
A. K.
, and
Agarwal
,
R.
,
2020
, “
Numerical Investigation of Heat Transfer of Non-Newtonian Power-Law Fluids Around a Triangular Prism in Time-Periodic Regime
,”
Iran. J. Sci. Technol. - Trans. Mech. Eng.
,
44
(
2
), pp.
427
441
.10.1007/s40997-018-0270-x
19.
Abbasinezhad Fallah
,
D.
,
Rezazadeh
,
S.
,
Jalili
,
H.
, and
Raad
,
M.
,
2022
, “
Numerical Investigation of Triangular Bluff Bodies Size Effect on Heat and Mass Transfer Phenomena: Internal Flow
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
5
), p.
219
.10.1007/s40430-022-03526-7
20.
Çelik
,
Z.
, and
Altaç
,
Z.
,
2023
, “
Numerical Investigation of Two-Dimensional Unsteady Flow and Heat Transfer From Rounded Equilateral Isothermal Triangular Cylinders in Cross Flow
,”
Ocean Eng.
,
269
(
2022
), pp.
113468
113468
.10.1016/j.oceaneng.2022.113468
21.
Zhou
,
Y.
, and
Yiu
,
M. W.
,
2006
, “
Flow Structure, Momentum and Heat Transport in a Two-Tandem-Cylinder Wake
,”
J. Fluid Mech.
,
548
, p.
17
.10.1017/S002211200500738X
22.
Jogee
,
S.
,
Prasad
,
B. V. S. S. S.
, and
Anupindi
,
K.
,
2020
, “
Large-Eddy Simulation of Non-Isothermal Flow Over a Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
151
, p.
119426
.10.1016/j.ijheatmasstransfer.2020.119426
23.
Derakhshandeh
,
J. F.
, and
Ji
,
C.
,
2024
, “
Flow Disturbances Over Heated Indented Surface Cylinders Arranged in a Tandem
,”
Ocean Eng.
,
296
, p.
116903
.10.1016/j.oceaneng.2024.116903
24.
Derakhshandeh
,
J. F.
, and
Gharbia
,
Y.
,
2024
, “
The Influence of Magneto-Hydrodynamics and Vortex Generators on Nanofluids Heat Transfer
,”
J. Magn. Magn. Mater.
,
597
, p.
171987
.10.1016/j.jmmm.2024.171987
25.
Sharma
,
A.
, and
Eswaran
,
V.
,
2004
, “
Heat and Fluid Flow Across a Square Cylinder in the Two-Dimensional Laminar Flow Regime
,”
Numer. Heat Transfer; Part A
,
45
(
3
), pp.
247
269
.10.1080/10407780490278562
26.
Rosales
,
J. L.
,
Ortega
,
A.
, and
Humphrey
,
J. A. C.
,
2001
, “
Numerical Simulation of the Convective Heat Transfer in Confined Channel Flow Past Square Cylinders: Comparison of Inline and Offset Tandem Pairs
,”
Int. J. Heat Mass Transfer
,
44
(
3
), pp.
587
603
.10.1016/S0017-9310(00)00113-7
27.
Chatterjee
,
D.
, and
Mondal
,
B.
,
2012
, “
Forced Convection Heat Transfer From Tandem Square Cylinders for Various Spacing Ratios
,”
Numer. Heat Transfer; Part A
,
61
(
5
), pp.
381
400
.10.1080/10407782.2012.647985
28.
De
,
A. K.
, and
Dalal
,
A.
,
2007
, “
Numerical Study of Laminar Forced Convection Fluid Flow and Heat Transfer From a Triangular Cylinder Placed in a Channel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
129
(
5
), pp.
646
656
.10.1115/1.2712848
29.
Agarwal
,
R.
, and
Dhiman
,
A.
,
2014
, “
Flow and Heat Transfer Phenomena Across Two Confined Tandem Heated Triangular Bluff Bodies
,”
Numer. Heat Transfer; Part A
,
66
(
9
), pp.
1020
1047
.10.1080/10407782.2014.894395
30.
Khaledi
,
H. A.
, and
Andersson
,
H. I.
,
2011
, “
On Vortex Shedding From a Hexagonal Cylinder
,”
Phys. Lett. A
,
375
(
45
), pp.
4007
4021
.10.1016/j.physleta.2011.09.046
31.
Nouri
,
S.
,
Boulaaras
,
S.
, and
Hafsia
,
Z.
,
2023
, “
Vortex Shedding Induced by Polygonal Cylinders
,”
Eur. Phys. J.: Spec. Top.
,
232
(
4
), pp.
403
414
.10.1140/epjs/s11734-023-00793-w
32.
Hourigan
,
K.
,
Thompson
,
M. C.
, and
Tan
,
B. T.
,
2001
, “
Self-Sustained Oscillations In Flows Around Long Blunt Plates
,”
J. Fluids Struct.
,
15
(
3–4
), pp.
387
398
.10.1006/jfls.2000.0352
33.
El-Makdah
,
A. M.
, and
Oweis
,
G. F.
,
2013
, “
The Flow Past a Cactus-Inspired Grooved Cylinder
,”
Exp. Fluids
,
54
(
2
), p.
1464
.10.1007/s00348-013-1464-z
34.
Hosseini
,
S.
,
Afsharfard
,
A.
,
Zarkak
,
M. R.
,
Esfehani
,
J. A.
,
Kim
,
S.
, and
Kim
,
K. C.
,
2023
, “
Increasing Vortex-Induced Vibration-Based Energy Harvesting Using a Nature-Inspired Bluff Body: An Experimental Study
,”
Eur. J. Mech., B/Fluids
,
97
, pp.
1
11
.10.1016/j.euromechflu.2022.08.002
35.
Mettu
,
S.
,
Verma
,
N.
, and
Chhabra
,
R. P.
,
2006
, “
Momentum and Heat Transfer From an Asymmetrically Confined Circular Cylinder in a Plane Channel
,”
Heat Mass Transfer
,
42
(
11
), pp.
1037
1048
.10.1007/s00231-005-0074-6
36.
Mahír
,
N.
, and
Altaç
,
Z.
,
2008
, “
Numerical Investigation of Convective Heat Transfer in Unsteady Flow Past Two Cylinders in Tandem Arrangements
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1309
1318
.10.1016/j.ijheatfluidflow.2008.05.001
37.
Chen
,
W.
,
Ji
,
C.
,
Alam
,
M. M.
,
Williams
,
J.
, and
Xu
,
D.
,
2020
, “
Numerical Simulations of Flow Past Three Circular Cylinders in Equilateral-Triangular Arrangements
,”
J. Fluid Mech.
,
891
, p.
A14
.10.1017/jfm.2020.124
38.
Izadpanah
,
E.
,
Amini
,
Y.
, and
Ashouri
,
A.
,
2018
, “
A Comprehensive Investigation of Vortex Induced Vibration Effects on the Heat Transfer From a Circular Cylinder
,”
Int. J. Therm. Sci.
,
125
, pp.
405
418
.10.1016/j.ijthermalsci.2017.12.011
39.
Sonawane
,
C.
,
Praharaj
,
P.
,
Kulkarni
,
A.
,
Pandey
,
A.
, and
Panchal
,
H.
,
2023
, “
Numerical Simulation of Heat Transfer Characteristics of Circular Cylinder Forced to Oscillate Elliptically in an Incompressible Fluid Flow
,”
J. Therm. Anal. Calorim.
,
148
(
7
), pp.
2719
2736
.10.1007/s10973-022-11621-z
40.
Ranjan
,
R.
,
Dalal
,
A.
, and
Biswas
,
G.
,
2008
, “
A Numerical Study of Fluid Flow and Heat Transfer Around a Square Cylinder at Incidence Using Unstructured Grids
,”
Numer. Heat Transfer, Part A
,
54
(
9
), pp.
890
913
.10.1080/10407780802424361
41.
Singh
,
A. P.
,
De
,
A. K.
,
Carpenter
,
V. K.
,
Eswaran
,
V.
, and
Muralidhar
,
K.
,
2009
, “
Flow Past a Transversely Oscillating Square Cylinder in Free Stream at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
61
(
6
), pp.
658
682
.10.1002/fld.1979
42.
Sen
,
S.
,
Mittal
,
S.
, and
Biswas
,
G.
,
2011
, “
Flow Past a Square Cylinder at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
67
(
9
), pp.
1160
1174
.10.1002/fld.2416
43.
Park
,
D.
, and
Yang
,
K. S.
,
2016
, “
Flow Instabilities in the Wake of a Rounded Square Cylinder
,”
J. Fluid Mech.
,
793
, pp.
915
932
.10.1017/jfm.2016.156
44.
Derakhshandeh
,
J. F.
, and
Alam
,
M. M.
,
2019
, “
A Numerical Study of Heat Transfer Enhancement by a Rectangular Cylinder Placed Parallel to the Heated Wall
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
141
(
7
), p.
071901
.10.1115/1.4043212
45.
Derakhshandeh
,
J. F.
, and
Alam
,
M. M.
,
2019
, “
A Review of Bluff Body Wakes
,”
Ocean Eng.
,
182
, pp.
475
488
.10.1016/j.oceaneng.2019.04.093
46.
Breuer
,
M.
,
Bernsdorf
,
J.
,
Zeiser
,
T.
, and
Durst
,
F.
,
2000
, “
Accurate Computations of the Laminar Flow Past a Square Cylinder Based on Two Different Methods: Lattice-Boltzmann and Finite Volume
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
186
196
.10.1016/S0142-727X(99)00081-8
You do not currently have access to this content.