Abstract

This study presents experimental data on the effects of the solid-to-fluid thermal conductivity ratio on natural convective heat transfer in a fluid-saturated porous medium heated from below. Argon is used as the saturating fluid, while a bed of glass, steel, or aluminum spheres constitutes the solid porous matrix. Emphasis is placed on attaining high Rayleigh numbers while maintaining low Darcy numbers (5.68×108Da5.22×107). At low modified Rayleigh numbers (Ra*) corresponding to the Darcy regime, the Nusselt number is independent of the medium conductivity. As Ra* increases and the system transitions into the Forchheimer regime, the data diverge, with Nusselt numbers decreasing with increased thermal conductivity ratio at a fixed Ra*. This nonintuitive result is shown to be the result of the traditional choice of Ra* and Da as the controlling parameter since the heat transfer coefficient appears independent of the conductivity ratio. Scaling arguments are used to identify transition points between the regimes, which yield the transition criterion Ra* ∼ Prp, where Prp is the modified Prandtl number. When the data are expressed by scaling with Prp, it is shown that the data for multiple parameter combinations collapse onto a single curve, which also agrees well with some theoretical predictions. In light of this finding, the data from available literature are assessed, and it is proposed that deviations from theory are likely the result of the strong porous medium condition (low Da) not being satisfied.

References

1.
Bringedal
,
C.
,
Berre
,
I.
, and
Nordbotten
,
J. M.
,
2013
, “
Influence of Natural Convection in a Porous Medium When Producing From Borehole Heat Exchangers
,”
Water Resour. Res.
,
49
(
8
), pp.
4927
4938
.10.1002/wrcr.20388
2.
Shankar
,
V.
, and
Hagentoft
,
C.
,
2000
, “
A Numerical Study of Effect of Natural Convection on Thermal Properties of Horizontal Oriented Porous Insulation
,”
J. Therm. Env. Build. Sci.
,
24
(
2
), pp.
155
167
.10.1106/BLW6-JKJA-VNN4-MH62
3.
Bu
,
S.
,
Li
,
Z.
,
Ma
,
Z.
,
Sun
,
W.
,
Zhang
,
L.
, and
Chen
,
D.
,
2020
, “
Numerical Study of Natural Convection Effects on Effective Thermal Conductivity in a Pebble Bed
,”
Ann. Nucl. Energy
,
144
, p.
107524
.10.1016/j.anucene.2020.107524
4.
Soboleva
,
E.
,
2023
, “
Instability Problems and Density-Driven Convection in Saturated Porous Media Linking to Hydrogeology: A Review
,”
Fluids
,
8
(
2
), p.
36
.10.3390/fluids8020036
5.
Beukema
,
K. J.
,
1980
, “Heat and Mass Transfer During Cooling and Storage of Agricultural Products as Influenced by Natural Convection,”
Wageningen University and Research
, Wageningem, The Netherlands.
6.
Niemela
,
J. J.
,
2004
, “
High Rayleigh Number Thermal Convection
,”
J. Low Temp. Phys.
,
134
(
1/2
), pp.
447
456
.10.1023/B:JOLT.0000012594.47945.f6
7.
Ahlers
,
G.
,
Grossmann
,
S.
, and
Lohse
,
D.
,
2009
, “
Heat Transfer and Large Scale Dynamics in Turbulent Rayleigh-Bénard Convection
,”
Rev. Mod. Phys.
,
81
(
2
), pp.
503
537
.10.1103/RevModPhys.81.503
8.
Madanan
,
U.
, and
Goldstein
,
R.
,
2019
, “
Thermal Convection in Horizontal Rectangular Enclosures at Moderate Rayleigh Numbers: Effect of Sidewall Conductance and Aspect Ratio
,”
Int. J. Heat Mass Transfer
,
136
, pp.
178
185
.10.1016/j.ijheatmasstransfer.2019.02.076
9.
Srinivasan
,
V.
,
Madanan
,
U.
, and
Goldstein
,
R.
,
2022
, “
Turbulent Rayleigh-Bénard Convection of Compressed Gas: Effect of Sidewall Thermal Conductance
,”
Int. J. Heat Mass Transfer
,
182
, p.
121965
.10.1016/j.ijheatmasstransfer.2021.121965
10.
Horton
,
C.
, and
Rogers
,
F.
, Jr.
,
1945
, “
Convection Currents in a Porous Medium
,”
J. Appl. Phys.
,
16
(
6
), pp.
367
370
.10.1063/1.1707601
11.
Lapwood
,
E. R.
,
1948
, “
Convection of a Fluid in a Porous Medium
,”
Math. Proc. Cambridge Philos. Soc.
,
44
,pp.
508
521
.10.1017/S030500410002452X
12.
Morrison
,
H.
,
Rogers
,
F.
, Jr.
, and
Horton
,
C.
,
1949
, “
Convection Currents in Porous Media: II. Observation of Conditions at Onset of Convection
,”
J. Appl. Phys.
,
20
(
11
), pp.
1027
1029
.10.1063/1.1698267
13.
Rogers
,
F.
, Jr.
, and
Morrison
,
H.
,
1950
, “
Convection Currents in Porous Media—III: Extended Theory of the Critical Gradient
,”
J. Appl. Phys.
,
21
(
11
), pp.
1177
1180
.10.1063/1.1699561
14.
Rogers
,
F.
, Jr.
,
Schilberg
,
L.
, and
Morrison
,
H.
,
1951
, “
Convection Currents in Porous Media. IV. Remarks on the Theory
,”
J. Appl. Phys.
,
22
(
12
), pp.
1476
1479
.10.1063/1.1699895
15.
Kathare
,
V.
,
Davidson
,
J.
, and
Kulacki
,
F.
,
2008
, “
Natural Convection in Water-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3794
3802
.10.1016/j.ijheatmasstransfer.2007.11.051
16.
Davidson
,
J. H.
,
Kulacki
,
F.
, and
Savela
,
D.
,
2009
, “
Natural Convection in Water-Saturated Reticulated Vitreous Carbon Foam
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4479
4483
.10.1016/j.ijheatmasstransfer.2009.03.051
17.
Keene
,
D. J.
, and
Goldstein
,
R.
,
2015
, “
Thermal Convection in Porous Media at High Rayleigh Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
3
), p.
034503
.10.1115/1.4029087
18.
Yen
,
Y. C.
,
1974
, “
Effects of Density Inversion on Free Convective Heat Transfer in Porous Layer Heated From Below
,”
Int. J. Heat Mass Transfer
,
17
(
11
), pp.
1349
1356
.10.1016/0017-9310(74)90136-7
19.
Combarnous
,
M.
, and
Bories
,
S.
,
1975
, “
Hydrothermal Convection in Saturated Porous Media
,”
Advances in Hydroscience
, Vol.
10
,
Elsevier
, Cambridge, MA, pp.
231
307
.
20.
Lister
,
C.
,
1990
, “
An Explanation for the Multivalued Heat Transport Found Experimentally for Convection in a Porous Medium
,”
J. Fluid Mech.
,
214
(
-1
), pp.
287
320
.10.1017/S0022112090000143
21.
Buretta
,
R.
, and
Berman
,
A.
,
1976
, “
Convective Heat Transfer in a Liquid Saturated Porous Layer
,”
ASME J. Appl. Mech.
,
43
(
2
), pp.
249
253
.10.1115/1.3423818
22.
Ataei-Dadavi
,
I.
,
Chakkingal
,
M.
,
Kenjeres
,
S.
,
Kleijn
,
C. R.
, and
Tummers
,
M. J.
,
2019
, “
Flow and Heat Transfer Measurements in Natural Convection in Coarse-Grained Porous Media
,”
Int. J. Heat Mass Transfer
,
130
, pp.
575
584
.10.1016/j.ijheatmasstransfer.2018.10.118
23.
Schneider
,
K.
,
1963
, “
Investigation of the Influence of Free Thermal Convection on Heat Transfer Through Granular Material, International Institute of Refrigeration
,”
Proceedings
,
247
, p.
253
.
24.
Kladias
,
N.
, and
Prasad
,
V.
,
1991
, “
Experimental Verification of Darcy-Brinkman- Forchheimer Flow Model for Natural Convection in Porous Media
,”
J. Thermophys. Heat Transfer
,
5
(
4
), pp.
560
576
.10.2514/3.301
25.
Aziz
,
K.
,
Bories
,
S. A.
, and
Combarnous
,
M. A.
,
1973
, “
The Influence of Natural Convection in Gas, Oil and Water Reservoirs
,”
J. Can. Pet. Technol.
,
12
(
2
), Paper No. PETSOC-73-02-05.10.2118/73-02-05
26.
Emami-Meybodi
,
H.
, and
Hassanzadeh
,
H.
,
2015
, “
Two-Phase Convective Mixing Under a Buoyant Plume of CO2 in Deep Saline Aquifers
,”
Adv. Water Resour.
,
76
, pp.
55
71
.10.1016/j.advwatres.2014.11.011
27.
Amooie
,
M. A.
,
Soltanian
,
M. R.
, and
Moortgat
,
J.
,
2018
, “
Solutal Convection in Porous Media: Comparison Between Boundary Conditions of Constant Concentration and Constant Flux
,”
Phys. Rev. E
,
98
(
3
), p.
033118
.10.1103/PhysRevE.98.033118
28.
Avramenko
,
A.
,
Tyrinov
,
A.
,
Shevchuk
,
I.
,
Dmitrenko
,
N.
,
Kravchuk
,
A.
, and
Shevchuk
,
V.
,
2017
, “
Mixed Convection in a Vertical Flat Microchannel
,”
Int. J. Heat Mass Transfer
,
106
, pp.
1164
1173
.10.1016/j.ijheatmasstransfer.2016.10.096
29.
Avramenko
,
A.
,
Kovetska
,
Y. Y.
,
Shevchuk
,
I.
,
Tyrinov
,
A.
, and
Shevchuk
,
V.
,
2018
, “
Mixed Convection in Vertical Flat and Circular Porous Microchannels
,”
Transp. Porous Media
,
124
(
3
), pp.
919
941
.10.1007/s11242-018-1104-4
30.
Bavandla
,
K. C.
, and
Srinivasan
,
V.
,
2024
, “
Rayleigh-Bénard Convection in a Gas-Saturated Porous Medium at Low Darcy Numbers
,”
ASME J. Heat Transfer-Trans. ASME
, 146(5), p. 051005.10.1115/1.4064327
31.
Postelnicu
,
A.
, and
Rees
,
D.
,
2003
, “
The Onset of Darcy–Brinkman Convection in a Porous Layer Using a Thermal Nonequilibrium Model–Part I: Stress-Free Boundaries
,”
Int. J. Energy Res.
,
27
(
10
), pp.
961
973
.10.1002/er.928
32.
Postelnicu
,
A.
,
2008
, “
The Onset of a Darcy–Brinkman Convection Using a Thermal Nonequilibrium Model–Part II
,”
Int. J. Therm. Sci.
,
47
(
12
), pp.
1587
1594
.10.1016/j.ijthermalsci.2008.01.002
33.
Malashetty
,
M.
,
Shivakumara
,
I.
, and
Kulkarni
,
S.
,
2005
, “
The Onset of Lapwood–Brinkman Convection Using a Thermal Non-Equilibrium Model
,”
Int. J. Heat Mass Transfer
,
48
(
6
), pp.
1155
1163
.10.1016/j.ijheatmasstransfer.2004.09.027
34.
Shivakumara
,
I.
,
Mamatha
,
A.
, and
Ravisha
,
M.
,
2010
, “
Boundary and Thermal Nonequilibrium Effects on the Onset of Darcy–Brinkman Convection in a Porous Layer
,”
J. Eng. Math.
,
67
(
4
), pp.
317
328
.10.1007/s10665-010-9362-3
35.
Madanan
,
U.
, and
Goldstein
,
R. J.
,
2020
, “
High-Rayleigh-Number Thermal Convection of Compressed Gases in Inclined Rectangular Enclosures
,”
Phys. Fluids
,
32
(
1
), p.
017103
.10.1063/1.5134820
36.
Lemmon
,
E. W.
, Jacobsen, R. T., 2004 “Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air,”
Int. J. Thermophys.
, 25(1), pp.
21
69
.10.1023/B:IJOT.0000022327.04529.f3
37.
Gray
,
D. D.
, and
Giorgini
,
A.
,
1976
, “
The Validity of the Boussinesq Approximation for Liquids and Gases
,”
Int. J. Heat Mass Transfer
,
19
(
5
), pp.
545
551
.10.1016/0017-9310(76)90168-X
38.
Muthukrishnan
,
S.
,
Tan
,
X.
, and
Srinivasan
,
V.
,
2023
, “
High-Efficiency Spray Cooling of Rough Surfaces With Gas-Assist Atomization
,”
Appl. Therm. Eng.
,
221
, p.
119764
.10.1016/j.applthermaleng.2022.119764
39.
Bavandla
,
K. C.
,
2024
, “
Rayleigh-b‘Enard Convection in a Gas-Saturated Porous Medium at Low Darcy Numbers’
,” Ph.D. thesis,
University of Minnesota
, Minneapolis, MN.
40.
Beavers
,
G.
,
Sparrow
,
E. M.
, and
Rodenz
,
D.
,
1973
, “
Influence of Bed Size on the Flow Characteristics and Porosity of Randomly Packed Beds of Spheres
,”
ASME J. Appl. Mech.
,
40
(
3
), pp.
655
660
.10.1115/1.3423067
41.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.https://dns2.asia.edu.tw/~ysho/YSHO-English/2000%20Engineering/PDF/Che%20Eng%20Pro48,%2089.pdf
42.
Katto
,
Y.
, and
Masuoka
,
T.
,
1967
, “
Criterion for the Onset of Convective Flow in a Fluid in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
10
(
3
), pp.
297
309
.10.1016/0017-9310(67)90147-0
43.
Prasad
,
V.
, and
Kladias
,
N.
,
1991
, “
Non-Darcy Natural Convection in Saturated Porous Media
,”
Convective Heat and Mass Transfer in Porous Media
, Springer, Dordrecht, The Netherlands, pp.
173
224
.10.1007/978-94-011-3220-6_7
44.
Nithiarasu
,
P.
,
Seetharamu
,
K.
, and
Sundararajan
,
T.
,
1997
, “
Natural Convective Heat Transfer in a Fluid Saturated Variable Porosity Medium
,”
Int. J. Heat Mass Transfer
,
40
(
16
), pp.
3955
3967
.10.1016/S0017-9310(97)00008-2
45.
Liu
,
S.
,
Jiang
,
L.
,
Chong
,
K. L.
,
Zhu
,
X.
,
Wan
,
Z.-H.
,
Verzicco
,
R.
,
Stevens
,
R. J.
,
Lohse
,
D.
, and
Sun
,
C.
,
2020
, “
From Rayleigh–Bénard Convection to Porous-Media Convection: How Porosity Affects Heat Transfer and Flow Structure
,”
J. Fluid Mech.
,
895
, p.
A18
.10.1017/jfm.2020.309
46.
Swift
,
D. L.
,
1966
, “
The Thermal Conductivity of Spherical Metal Powders Including the Effect of an Oxide Coating
,”
Int. J. Heat Mass Transfer
,
9
(
10
), pp.
1061
1074
.10.1016/0017-9310(66)90028-7
47.
Aichlmayr
,
H. T.
, and
Kulacki
,
F.
,
2006
,
The Effective Thermal Conductivity of Saturated Porous Media, Advances in Heat Transfer
, Vol.
39
, Academic Press, Cambridge, MA, pp.
377
460
.
48.
Hsu
,
C.
,
Cheng
,
P.
, and
Wong
,
K.
,
1994
, “
Modified Zehner-Schlunder Models for Stagnant Thermal Conductivity of Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2751
2759
.10.1016/0017-9310(94)90392-1
49.
Hsu
,
C. T.
,
Cheng
,
P.
, and
Wong
,
K. W.
,
1995
, “
A Lumped-Parameter Model for Stagnant Thermal Conductivity of Spatially Periodic Porous Media
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
2
), pp.
264
269
.10.1115/1.2822515
50.
Tyvand
,
P.
,
2002
, “
Onset of Rayleigh-Bénard Convection in Porous Bodies
,”
Transport Phenomena in Porous Media II
,
Elsevier
, Oxford, UK, pp.
82
112
.
51.
Elder
,
J. W.
,
1967
, “
Steady Free Convection in a Porous Medium Heated From Below
,”
J. Fluid Mech.
,
27
(
1
), pp.
29
48
.10.1017/S0022112067000023
52.
Nield
,
D. A.
, and
Bejan
,
A
, et al.,
2006
,
Convection in Porous Media
,
Springer
, New York, Chap.
6
.
53.
Wang
,
M.
, and
Bejan
,
A.
,
1987
, “
Heat Transfer Correlation for Bénard Convection in a Fluid Saturated Porous Layer
,”
Int. Commun. Heat Mass Transfer
,
14
(
6
), pp.
617
626
.10.1016/0735-1933(87)90041-8
54.
Ward
,
J.
,
1964
, “
Turbulent Flow in Porous Media
,”
J. Hydraul. Div.
,
90
(
5
), pp.
1
12
.10.1061/JYCEAJ.0001096
55.
Fleischer
,
A.
, and
Goldstein
,
R.
,
2002
, “
High-Rayleigh-Number Convection of Pressurized Gases in a Horizontal Enclosure
,”
J. Fluid Mech.
,
469
, pp.
1
12
.10.1017/S002211200200174X
You do not currently have access to this content.