Abstract

Nondiffusive thermal transport in solids and their micro/nanostructures is a key subject in the research of micro/nanoscale heat conduction. A number of laser and optical techniques to measure or capture the nondiffusive behaviors of heat carriers have been developed, such as transient thermoreflectance, time-domain thermoreflectance (TDTR), transient thermal grating (TTG), and so on. Here, we propose a novel method to study micro/nanoscale heat transport, namely, speckled laser pump–thermoreflectance microscopy probe. In this technique, micrometer to few hundred nanometer size random heat spots are generated by a speckled laser pump pulse, and the time–space evolution of heat spots are recorded by thermoreflectance microscopy images of the probe pulses arriving at different delay times. Fourier transform is applied to analyze the thermoreflectance images and extract the thermal decaying time for different spatial frequencies and along different in-plane directions. Thermal conductivity at different spatial frequencies, which includes the nondiffusive transport information, is obtained in this way. By numerically performing simulation of anisotropic Brownian motion and solving phonon Boltzmann transport equations under the initial condition of random heat spots, we retrieve the preset anisotropic thermal conductivity and the nondiffusive behavior of reduced thermal conductivity with increasing spatial frequencies, proving the validity of this technique. The innovative method can also be applied to study electron and spin transports, and holds the potential to facilitate the experimental research and understanding of nanoscale energy transport.

References

1.
Cahill
,
D. G.
,
Braun
,
P. V.
,
Chen
,
G.
,
Clarke
,
D. R.
,
Fan
,
S.
,
Goodson
,
K. E.
,
Keblinski
,
P.
,
King
,
W. P.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Phillpot
,
S. R.
,
Pop
,
E.
, and
Shi
,
L.
,
2014
, “
Nanoscale Thermal Transport. II. 2003–2012
,”
Appl. Phys. Rev.
,
1
(
1
), p.
011305
.10.1063/1.4832615
2.
Mahan
,
G. D.
, and
Claro
,
F.
,
1988
, “
Nonlocal Theory of Thermal Conductivity
,”
Phys. Rev. B
,
38
(
3
), pp.
1963
1969
.10.1103/PhysRevB.38.1963
3.
Chen
,
G.
,
1996
, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
118
(
3
), pp.
539
545
.10.1115/1.2822665
4.
Minnich
,
A. J.
,
Johnson
,
J. A.
,
Schmidt
,
A. J.
,
Esfarjani
,
K.
,
Dresselhaus
,
M. S.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2011
, “
Thermal Conductivity Spectroscopy Technique to Measure Phonon Mean Free Paths
,”
Phys. Rev. Lett.
,
107
(
9
), p.
095901
.10.1103/PhysRevLett.107.095901
5.
Koh
,
Y. K.
, and
Cahill
,
D. G.
,
2007
, “
Frequency Dependence of the Thermal Conductivity of Semiconductor Alloys
,”
Phys. Rev. B
,
76
(
7
), p.
075207
.10.1103/PhysRevB.76.075207
6.
Johnson
,
J. A.
,
Maznev
,
A. A.
,
Cuffe
,
J.
,
Eliason
,
J. K.
,
Minnich
,
A. J.
,
Kehoe
,
T.
,
Torres
,
C. M. S.
,
Chen
,
G.
, and
Nelson
,
K. A.
,
2013
, “
Direct Measurement of Room-Temperature Nondiffusive Thermal Transport Over Micron Distances in a Silicon Membrane
,”
Phys. Rev. Lett.
,
110
(
2
), p.
025901
.10.1103/PhysRevLett.110.025901
7.
Johnson
,
J. A.
,
Eliason
,
J. K.
,
Maznev
,
A. A.
,
Luo
,
T.
, and
Nelson
,
K. A.
,
2015
, “
Non-Diffusive Thermal Transport in GaAs at Micron Length Scales
,”
J. Appl. Phys.
,
118
(
15
), p.
155104
.10.1063/1.4933285
8.
Siemens
,
M. E.
,
Li
,
Q.
,
Yang
,
R.
,
Nelson
,
K. A.
,
Anderson
,
E. H.
,
Murnane
,
M. M.
, and
Kapteyn
,
H. C.
,
2010
, “
Quasi-Ballistic Thermal Transport From Nanoscale Interfaces Observed Using Ultrafast Coherent Soft X-Ray Beams
,”
Nat. Mater.
,
9
(
1
), pp.
26
30
.10.1038/nmat2568
9.
Cahill
,
D. G.
,
2004
, “
Analysis of Heat Flow in Layered Structures for Time-Domain Thermoreflectance
,”
Rev. Sci. Instrum.
,
75
(
12
), pp.
5119
5122
.10.1063/1.1819431
10.
Schmidt
,
A. J.
,
Chen
,
X.
, and
Chen
,
G.
,
2008
, “
Pulse Accumulation, Radial Heat Conduction, and Anisotropic Thermal Conductivity in Pump-Probe Transient Thermoreflectance
,”
Rev. Sci. Instrum.
,
79
(
11
), p.
114902
.10.1063/1.3006335
11.
Johnson
,
J. A.
,
Maznev
,
A. A.
,
Bulsara
,
M. T.
,
Fitzgerald
,
E. A.
,
Harman
,
T. C.
,
Calawa
,
S.
,
Vineis
,
C. J.
,
Turner
,
G.
, and
Nelson
,
K. A.
,
2012
, “
Phase-Controlled, Heterodyne Laser-Induced Transient Grating Measurements of Thermal Transport Properties in Opaque Material
,”
J. Appl. Phys.
,
111
(
2
), p.
023503
.10.1063/1.3675467
12.
Huberman
,
S.
,
Duncan
,
R. A.
,
Chen
,
K.
,
Song
,
B.
,
Chiloyan
,
V.
,
Ding
,
Z.
,
Maznev
,
A. A.
,
Chen
,
G.
, and
Nelson
,
K. A.
,
2019
, “
Observation of Second Sound in Graphite at Temperatures Above 100 K
,”
Science
,
364
(
6438
), pp.
375
379
.10.1126/science.aav3548
13.
Yue
,
S.
,
Tian
,
F.
,
Sui
,
X.
,
Mohebinia
,
M.
,
Wu
,
X.
,
Tong
,
T.
,
Wang
,
Z.
,
Wu
,
B.
,
Zhang
,
Q.
,
Ren
,
Z.
,
Bao
,
J.
, and
Liu
,
X.
,
2022
, “
High Ambipolar Mobility in Cubic Boron Arsenide Revealed by Transient Reflectivity Microscopy
,”
Science
,
377
(
6604
), pp.
433
436
.10.1126/science.abn4727
14.
Jiang
,
P.
,
Qian
,
X.
, and
Yang
,
R.
,
2018
, “
Tutorial: Time-Domain Thermoreflectance (TDTR) for Thermal Property Characterization of Bulk and Thin Film Materials
,”
J. Appl. Phys.
,
124
(
16
), p.
161103
.10.1063/1.5046944
15.
Chiloyan
,
V.
,
Huberman
,
S.
,
Ding
,
Z.
,
Mendoza
,
J.
,
Maznev
,
A. A.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2021
, “
Green's Functions of the Boltzmann Transport Equation With the Full Scattering Matrix for Phonon Nanoscale Transport Beyond the Relaxation-Time Approximation
,”
Phys. Rev. B
,
104
(
24
), p.
245424
.10.1103/PhysRevB.104.245424
16.
Hu
,
Y.
,
Jia
,
R.
,
Xu
,
J.
,
Sheng
,
Y.
,
Wen
,
M.
,
Lin
,
J.
,
Shen
,
Y.
, and
Bao
,
H.
,
2024
, “
GiftBTE: An Efficient Deterministic Solver for Non-Gray Phonon Boltzmann Transport Equation
,”
J. Phys.: Condens. Matter
,
36
(
2
), p.
025901
.10.1088/1361-648X/acfdea
17.
Hu
,
Y.
,
Shen
,
Y.
, and
Bao
,
H.
,
2024
, “
Ultra-Efficient and Parameter-Free Computation of Submicron Thermal Transport With Phonon Boltzmann Transport Equation
,”
Fundam. Res.
,
4
(
4
), pp.
907
915
.10.1016/j.fmre.2022.06.007
18.
Tadano
,
T.
,
Gohda
,
Y.
, and
Tsuneyuki
,
S.
,
2014
, “
Anharmonic Force Constants Extracted From First-Principles Molecular Dynamics: Applications to Heat Transfer Simulations
,”
J. Phys.: Condens. Matter
,
26
(
22
), p.
225402
.10.1088/0953-8984/26/22/225402
19.
Minnich
,
A. J.
,
2012
, “
Determining Phonon Mean Free Paths From Observations of Quasiballistic Thermal Transport
,”
Phys. Rev. Lett.
,
109
(
20
), p.
205901
.10.1103/PhysRevLett.109.205901
20.
Collins
,
K. C.
,
Maznev
,
A. A.
,
Tian
,
Z.
,
Esfarjani
,
K.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2013
, “
Non-Diffusive Relaxation of a Transient Thermal Grating Analyzed With the Boltzmann Transport Equation
,”
J. Appl. Phys.
,
114
(
10
), p.
104302
.10.1063/1.4820572
21.
Choudhry
,
U.
,
Kim
,
T.
,
Adams
,
M.
,
Ranasinghe
,
J.
,
Yang
,
R.
, and
Liao
,
B.
,
2021
, “
Characterizing Microscale Energy Transport in Materials With Transient Grating Spectroscopy
,”
J. Appl. Phys.
,
130
(
23
), p.
231101
.10.1063/5.0068915
You do not currently have access to this content.