Abstract

In ductile metals, plasticity-induced closure of fatigue cracks often retards significantly measured crack growth rates in the Paris regime and contributes strongly to the observed R-ratio effect in experimental data. This work describes a similarity scaling relationship based on the 3D small-scale yielding framework wherein the thickness, B, defines the only geometric length-scale of the model. Dimensional analysis suggests a scaling relationship for the crack opening loads relative to the maximum cyclic loads (Kop/Kmax) governed by the non-dimensional load parameter ) governed by the non-dimensional load parameter = Kmax0B, i.e., a measure of the in-plane plastic zone size normalized by the thickness. Both Kop and Kmax refer to remotely applied values of the mode I stress-intensity factor. Large-scale, 3D finite element analyses described here demonstrate that Kop/Kmax values vary strongly across the crack front in thin sheets but remain unchanged when values vary strongly across the crack front in thin sheets but remain unchanged when Kmax, B, and σ0 vary to maintain = constant. The paper also includes results to demonstrate that the scaling relationship holds for non-zero values of the T-stress (which affect the Kop/Kmax values) and for an overload interspersed in the otherwise constant amplitude cycles. The present results focus on values) and for an overload interspersed in the otherwise constant amplitude cycles. The present results focus on R = Kmin/Kmax = 0 loading, although the scaling relationship has been demonstrated to hold for other = 0 loading, although the scaling relationship has been demonstrated to hold for other R > 0 loadings as well. The new similarity scaling relationship makes possible more realistic estimates of crack closure loads for a very wide range of practical conditions from just a few analyses of the type described here.

References

1.
Elber
,
W.
, “
Fatigue Crack Closure Under Cyclic Tension
,”
Engineering Fracture Mechanics
 0013-7944 https://doi.org/10.1016/0013-7944(70)90028-7, Vol.
2
,
1970
, pp.
37
-
45
.
2.
Hudson
,
C. M.
, “
Effect of Stress Ratio on Fatigue-Crack Growth in 7075-T6 and 2024-T3 Aluminum Alloy Specimens
,” NASA TN D-5390,
1969
.
3.
Phillips
,
E. P.
, “
The Influence of Crack Closure on Fatigue Crack Growth Thresholds in 2024-T3 Aluminum Alloy
,” ASTM STP 982,
1988
, pp.
505
-
515
.
4.
Newman
,
J. C.
, Jr.
, “
A Crack-Closure Model for Predicting Fatigue Crack Growth Under Aircraft Spectrum Loading
,” ASTM STP 748,
1981
, pp.
53
-
84
.
5.
Newman
,
J. C.
, Jr.
, “
An Evaluation of Plasticity-Induced Crack Closure Concept and Measurement Methods
,” ASTM STP 1343,
1999
, pp.
128
-
144
.
6.
Newman
,
J. C.
, Jr.
, “
A Finite Element Analysis of Fatigue Crack Closure
,” ASTM STP 590,
1976
, pp.
281
-
301
.
7.
McClung
,
R. C.
, “
Finite Element Analysis of Fatigue Crack Closure: A Historical and Critical Review
,”
Seventh International Fatigue Conference
,
Beijing, China
,
1999
, Vol.
1
, pp.
495
-
502
.
8.
Chermahini
,
R. G.
,
Shivakumar
,
K. N.
and
Newman
,
J. C.
 Jr.
, “
Three-Dimensional Finite Element Simulation of Fatigue Crack Growth and Closure
,” ASTM STP 982,
1988
, pp.
398
-
413
.
9.
Chermahini
,
R. G.
,
Shivakumar
,
K. N.
,
Newman
,
J. C.
 Jr.
and
Blom
,
A. F.
, “
Three-Dimensional Aspects of Plasticity Induced Fatigue Crack Closure
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
34
,
1989
,
393
-
401
.
10.
Chermahini
,
R. G.
,
Palmberg
,
B.
, and
Blom
,
A. F.
, “
Fatigue Crack Growth and Closure of Semicircular and Semielliptical Surface Flaws
,”
International Journal of Fatigue
 0142-1123 https://doi.org/10.1016/0142-1123(93)90374-Y, Vol.
15
,
1993
, pp.
259
-
263
.
11.
Skinner
,
J. D.
and
Daniewicz
,
S. R.
, “
Simulation of Plasticity-Induced Fatigue Crack Closure in Part-Through Cracked Geometries Using Finite Element Analysis
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
69
,
2002
, pp.
1
-
11
.
12.
Zhang
,
J. L.
and
Bowen
,
P.
, “
On the Finite Element Simulation of Three-Dimensional Semi-Circular Fatigue Crack Growth and Closure
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
60
,
1998
, pp.
341
-
360
.
13.
Roychowdhury
,
S.
and
Dodds
,
R.
, “
Three Dimensional Effects on Fatigue Crack Closure in the Small-Scale Yielding Regime—A Finite Element Study
,”
Fatigue & Fracture of Engineering Materials & Structures
, Vol.
26
,
2003
, pp.
663
-
673
.
14.
RoyChowdhury
,
S.
and
Dodds
,
R.
, “
A Numerical Investigation of 3-D Small-Scale Yielding Fatigue Crack Growth
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
70
,
2003
, pp.
2363
-
2383
.
15.
RoyChowdhury
,
S.
and
Dodds
,
R.
, “
Effect of T… stress on Fatigue Crack Closure in 3-D Small-Scale Yielding
,”
International Journal of Solids & Structures
, Vol.
41
,
2004
, pp.
2581
-
2606
.
16.
McClung
,
R. C.
, “
Finite Element Analysis of Specimen Geometry Effects on Fatigue Crack Closure
,”
Fatigue & Fracture of Engineering Materials & Structures
, Vol.
17
,
1994
, pp.
861
-
872
.
17.
Sherry
,
A. H.
,
France
,
C. C.
, “
Goldthorpe, M.R., Compendium of T… Stress Solutions for Two and Three Dimensional Cracked Geometries
,”
Fatigue & Fracture of Engineering Materials & Structures
, Vol.
18
,
1995
, pp.
141
-
155
.
18.
Larsson
,
S. G.
,
Carlsson
,
A. J.
, “
Influence of Non-Singular Stress Terms and Specimen Geometry on Small-Scale Yielding at Crack Tips in Elastic-Plastic Materials
,”
Journal of the Mechanics & Physics of Solids
, Vol.
21
,
1973
, pp.
263
-
277
.
19.
Hom
,
C. L.
and
McMeeking
,
R. M.
, “
Three-Dimensional Void Growth Before a Blunting Crack Tip
,”
Journal of the Mechanics & Physics of Solids
, Vol.
37
, No.
3
,
1989
, pp.
395
-
415
.
20.
Hom
,
C. L.
and
McMeeking
,
R. M.
, “
Finite Element Analysis of Void Growth in Elastic-Plastic Materials
,”
International Journal of Fracture
, Vol.
42
,
1990
, pp.
1
-
19
.
21.
McMeeking
,
R. M.
and
Hom
,
C. L.
, “
Large Crack Tip Opening in Thin Elastic-Plastic Sheets
,”
Interna-tional Journal of Fracture
, Vol.
45
,
1990
, pp.
103
-
122
.
22.
Nakamura
,
T.
and
Parks
,
D. M.
, “
Three-Dimensional Crack Front Fields in a Thin Ductile Plate
,”
Journal of the Mechanics & Physics of Solids
, Vol.
38
, No.
6
,
1990
, pp.
787
-
812
.
23.
Yuan
,
H.
and
Brocks
,
W.
, “
Quantification of Constraint Effects in Elastic-Plastic Crack Front Fields
,”
Journal of the Mechanics & Physics of Solids
, Vol.
46
, No.
2
,
1998
, pp.
219
-
241
.
24.
Kim
,
Y.
,
Zhu
,
X. K.
, and
Chao
,
Y. J.
, “
Quantification of Constraint on Elastic-Plastic 3D Crack Front by the J-A2 Three-Term Solution
,”
Engineering Fracture Mechanics
 0013-7944 https://doi.org/10.1016/S0013-7944(00)00134-X, Vol.
68
,
2001
, pp.
895
-
914
.
25.
Fleck
,
N.
, “
Finite Element Analysis of Plasticity-Induced Crack Closure Under Plane Strain Conditions
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
25
,
1986
, pp.
441
-
449
.
26.
McClung
,
R. C.
, and
Sehitoglu
,
H.
, “
On the Finite Element Modeling of Fatigue Crack Closure-2 Numerical Results
,”
Engineering Fracture Mechanics
 0013-7944 https://doi.org/10.1016/0013-7944(89)90028-3, Vol.
33
,
1989
, pp.
253
-
272
.
27.
Hughes
,
T. J.
, “
Generalization of Selective Integration Procedures to Anisotropic and Nonlinear Media
,”
International Journal for Numerical Methods in Engineering
 0029-5981 https://doi.org/10.1002/nme.1620150914, Vol.
15
,
1980
, pp.
1413
-
1418
.
28.
Williams
,
M. L.
, “
On the Stress Distribution at the Base of a Stationary Crack
,”
Journal of Applied Mechanics
 0021-8936, Vol.
24
,
1957
, pp.
109
-
114
.
29.
McClung
,
R. C.
,
Thacker
,
B. H.
and
Roy
,
S.
, “
Finite Element Visualization of Fatigue Crack Closure In Plane Stress and Plane Strain
,”
International Journal of Fracture
, Vol.
50
,
1991
, pp.
27
-
49
.
30.
Parry
,
M. R.
,
Syngellakis
,
S.
and
Sinclair
,
I.
, “
Numerical Modeling of Combined Roughness and Plasticity Induced Crack closure Effects in Fatigue
,”
Material Science in Engineering
,
A291
,
2000
, pp.
224
-
234
.
31.
Gullerud
,
A. S
,
Koppenhoefer
,
K. C.
,
Arun Roy
,
Y.
,
Roychowdhury
,
S.
and
Dodds
, ,
R. H.
 Jr.
WARP3D—Release 14.2 Manual
,” Civil Engineering, Report No. UILU-ENG-95-2012,
University of Illinois
,
2003
.
32.
Betegon
,
C.
and
Hancock
,
J. W.
, “
Two Parameter Characterization of Elastic-Plastic Crack-Tip Fields
,”
Journal of Applied Mechanics, ASME
, Vol.
58
,
1991
, pp.
104
-
110
.
33.
Solanki
,
K.
,
Daniewicz
,
S. R.
, and
Newman
,
J. C.
, “
Finite Element Modeling of Plasticity-Induced Crack Closure with Emphasis on Geometry and Mesh Refinement Effects
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
70
,
2003
, pp.
1475
-
1489
.
34.
Wheeler
,
O. E.
, “
Spectrum Loading and Crack Growth
,”
Journal of Basic Engineering, ASME
, Vol.
94
,
1972
, pp.
181
-
186
.
35.
Newman
,
J. C.
, “
Prediction of FCG Under Variable Amplitude and Spectrum Loading Using a Closure Model
,” ASTM STP 761,
1982
, pp.
255
-
277
.
36.
Yisheng
,
W.
and
Schijve
,
J.
, “
Fatigue Crack Closure Measurements on 2024-T3 Sheet Specimens
,”
Fatigue & Fracture of Engineering Materials & Structures
, Vol.
18
,
1995
, pp.
917
-
921
.
This content is only available via PDF.
You do not currently have access to this content.