Abstract

Reliability analysis of tank car structures undergoing fatigue crack growth and general corrosion (tank wall thinning) is illustrated to support informed decision-making and planning for reliability-centered maintenance. Two specific mechanisms that contribute to tank car deterioration are considered: (1) corrosion with negligible fatigue crack growth; and (2) corrosion-accelerated fatigue crack growth. Reliability analysis of corrosion-accelerated fatigue crack growth is performed with a time-dependent tank wall thickness reduction and a fatigue crack growth model that incorporates a three-degrees-of-freedom surface crack obeying Walker crack growth law under tank car spectrum loading. System reliability problems involving multiple corrosion sites are considered to illustrate important features of failure probability for a series system in relation to failure probability of individual corrosion sites.

References

1.
Wu
,
Y.-T.
and
Wirsching
,
P. H.
, “
Advanced Reliability Method for Fatigue Analysis
,”
Journal of Engineering Mechanics
 0733-9399, ASCE, Vol.
110
, No.
4
,
1984
, pp.
536
-
553
.
2.
Ortiz
,
K.
and
Kiremidjian
,
A. S.
, “
Time Series Analysis of Fatigue Crack Growth Rate Data
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
24
, No.
5
,
1986
, pp.
657
-
675
.
3.
Madsen
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
, “
Methods of Structural Safety
,”
Prentice-Hall, Inc.
,
Englewood Cliffs, New Jersey
,
1986
.
4.
Sutharshana
,
S.
,
Creager
,
M.
,
Ebbeler
,
D.
, and
Moore
,
N.
, “
A Probabilistic Fracture Mechanics Approach for Structural Reliability Assessment of Space Flight Systems
,” ASTM STP 1122,
M. R.
Mitchell
and
R. W.
Landgraf
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1992
, pp.
234
-
246
.
5.
Manning
,
S. D.
,
Yang
,
J. N.
,
Pretzer
,
F. L.
, and
Marter
J. E.
, “
Reliability Centered Maintenance for Metallic Airframes Based on a Stochastic Crack Growth Approach
,” ASTM STP 1122,
M. R.
Mitchell
and
R. W.
Landgraf
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1992
, pp.
422
-
434
.
6.
Harkness
,
H. H.
,
Belytschko
,
T.
, and
Liu
,
W. K.
, “
Finite Element Reliability Analysis of Fatigue Life
,”
Nuclear Engineering and Design
 0029-5493 https://doi.org/10.1016/0029-5493(92)90181-T
133
,
1992
, pp.
209
-
224
.
7.
Millwater
,
H. R.
,
Wu
,
Y. T.
, and
Cardinal
,
J. W.
, “
Probabilistic Structural Analysis of Fatigue and Fracture
,” AIAA-94-1507-CP.
8.
Tryon
,
R. G.
,
Cruse
,
T. A.
, and
Mahadevan
,
S.
, “
Development of a Reliability-Based Fatigue Life Model for Gas Turbine Engine Structures
,”
Engineering Fracture Mechanics 53
,
5
,
1996
, pp.
807
-
828
.
9.
Berens
,
A. P.
, “
Applications of Risk Analysis to Aging Military Aircraft
,”
41st International SAMPE Symposium
, March 24–28, 1996, pp.
99
-
107
.
10.
Harlow
,
D. G.
and
Wei
,
R. P.
, “
A Probability Model for the Growth of Corrosion Pits in Aluminum Alloys Induced by Constituent Particles
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
59
, No.
3
,
1998
, pp.
305
-
325
.
11.
Akpan
,
U. O.
,
Koko
,
T. S.
,
Ayyub
,
B.
, and
Dunbar
,
T. E.
, “
Risk Assessment of Aging Ship Hull Structures in the presence of Corrosion and Fatigue
,”
Marine Structures
 0951-8339, Vol.
15
,
2002
, pp.
211
-
231
.
12.
Shi
,
P.
and
Mahadevan
,
S.
, “
Corrosion Fatigue and Multiple Site Damage Reliability Analysis
,”
International Journal of Fatigue
 0142-1123, Vol.
25
,
2003
, pp.
457
-
469
.
13.
Liao
,
M.
and
Komorowski
,
J. P.
, “
Corrosion Risk Assessment of Aircraft Structures
,”
Probabilistic Aspects of Life Prediction
, ASTM STP 1450,
W. S.
Johnson
and
B. M.
Hillberry
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2004
, pp.
183
-
198
.
14.
Cardinal
,
J. W.
and
Enright
,
M. P.
, “
Tank Car Stub Sill Damage Tolerance Analysis (DTA) Sensitivity Studies
,”
43rd Mechanical Working and Steel Processing Conference Proceedings
,
The Iron & Steel Society
,
Charlotte, NC
, Oct. 28–31, 2001, pp.
895
-
906
.
15.
Zhao
,
W.
,
Sutton
,
M. A.
, and
Penã
,
J.
, “
A Methodology for Assessing Fatigue Crack Growth Reliability of Railroad Tank Cars
,”
Probabilistic Aspects of Life Prediction
, ASTM STP 1450,
W. S.
Johnson
and
B. M.
Hillberry
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2004
, pp.
240
-
254
.
16.
Corrosion
,”
ASM Handbook
, Vol.
13
,
ASM International
,
1996
.
17.
STRUREL
, “
A Structural Reliability Analysis Program System
”, URL: http://www.strurel.de,
Reliability Consulting Programs, RCP GmbH
,
2000
.
18.
Hohenbichler
,
M.
and
Rackwitz
,
R.
, “
Improvement of Second-Order Reliability Estimates by Importance Sampling
,”
Journal of Engineering Mechanics
 0733-9399, ASCE, 114,
12
,
1988
, pp.
2195
-
2199
.
19.
Walker
,
E. K.
, “
Effects of Environments and Complex Load History on Fatigue Life
,” ASTM STP 462,
ASTM International
,
West Conshohocken, PA
,
1970
, pp.
1
-
14
.
20.
Zhao
,
W.
,
Newman
,
J. C.
, Jr.
, and
Sutton
,
M. A.
A Three-Dimensional Weight Function Method — Evaluation and Applications
,” ASTM STP 1296,
ASTM International
,
West Conshohocken, PA
,
1997
, pp.
563
-
579
.
21.
Zhao
,
W.
,
Sutton
,
M. A.
, and
Newman
,
J. C.
, Jr.
, “
K3D — A Program for Determining Stress Intensity Factors of Surface and Corner Cracks from a Hole
,” ASTM STP 1321,
ASTM International
,
West Conshohocken, PA
,
1997
, pp.
656
-
670
.
22.
Chen
,
X. G.
and
Albrecht
,
P.
, “
Weight Functions for Eccentric Cracks
,” ASTM STP 1207,
ASTM International
,
West Conshohocken, PA
,
1994
, pp.
581
-
614
.
23.
Rackwitz
,
R.
and
Fiessler
,
B.
, “
Structural Reliability under Combined Random Load Sequences
,”
Computers and Structures 9
, No.
5
,
1978
, pp.
489
-
494
.
24.
Ditlevsen
,
O.
, “
Narrow Reliability Bounds for Structural Systems
,”
Journal of Structural Mechanics 7
, No.
4
,
1979
, pp.
453
-
472
.
25.
Gollwitzer
,
S.
and
Rackwitz
,
R.
, “
An Efficient Numerical Solution to the Multinormal Intergral
,”
Probabilistic Engineering Mechanics
 0266-8920 https://doi.org/10.1016/0266-8920(88)90021-5,
3
,
2
,
1988
, pp.
98
-
101
.
This content is only available via PDF.
You do not currently have access to this content.