Abstract
A cascade of probabilistic mechanisms is proposed to better understand the 72 ft-lbs mechanical impact in liquid oxygen ignition threshold sensitivity testing of polymeric and polymer matrix composite materials. This model teams the well established and understood mechanisms of Hertzian fracture and kinetic friction. In conjunction they explain the mechanical fracturing of the specimen and the very rapid transformation of the test's mechanical energy into temperature rising heat energy. The model also provides the first explanation for the random probabilistic occurrence or nonoccurrence of ignitions in tested materials.
Issue Section:
Research Papers
References
1.
Tack
, W.
, McNamara
, D.
, Stoltzfus
, J.
, and Sircar
, S.
, “Aluminum-Lithium Alloys: Mechanical Property and Composition Effects on Liquid Oxygen Compatibility
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fifth Volume, ASTM STP 1111
, J. M.
Stoltzfus
and K.
McIlroy
, Eds., ASTM International
, West Conshohocken, PA
, 1991
, pp. 216
–239
.2.
Hauser
, R.
, Sykes
, G.
, and Rumpel
, W.
, “Mechanically Initiated Reactions of Organic Materials in Missile Oxidizers
,” TR 61-324, WPAFB, 1961
.3.
Reed
, R.
, Simon
, N.
, McColskey
, J.
, Berger
, J.
, McCowen
, C.
, Bransford
, J.
, Drexler
, E.
, and Walsh
, R.
, “Aluminum Alloys for Cryogenic Tanks: Oxygen Compatibility V1
,” AL TR 90 063, 1990
.4.
Reed
, R.
, Simon
, N.
, McColskey
, J.
, McCowen
, C.
, and Drexler
, E.
, “Aluminum Alloys for ALS Cryogenic Tanks: Oxygen Compatibility V2
,” AL TR 90 063, 1990
.5.
deQuay
, L.
and Scheuermann
, P.
, “Analysis of Oxygen Mechanical Impact Test Apparatuses and Methods
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fifth Volume, ASTM STP 1111
, J. M.
Stoltzfus
and K.
McIlroy
, Eds., ASTM International
, West Conshohocken, PA
, 1991
, pp. 87
–125
.6.
Reed
, R.
, Simon
, N.
, Berger
, J.
, and McColskey
, J.
, “Influence of Specimen Absorbed Energy in LOX Mechanical Impact Tests
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fifth Volume, ASTM STP 1111
, J. M.
Stoltzfus
and K.
McIlroy
, Eds., ASTM International
, West Conshohocken, PA
, 1991
, pp. 381
–398
.7.
McColskey
, J.
, Reed
, R.
, Simon
, N.
, and Bransford
, J.
, “Recommended Changes in ASTM TEST Methods D2512-82 and G86-84 for Oxygen Compatibility Mechanical Impact Tests on Metals
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fifth Volume, ASTM STP 1111
, J. M.
Stoltzfus
and K.
McIlroy
, Eds., ASTM International
, West Conshohocken, PA
, 1991
, pp. 126
–153
.8.
Simon
, N.
and Reed
, R.
, “Temperature Increases in Aluminum Alloys Durings Mechanical-Impact Tests for Oxygen Compatibility
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fifth Volume, ASTM STP 1111
, J. M.
Stoltzfus
and K.
McIlroy
, Eds., ASTM International
, West Conshohocken, PA
, 1991
, pp. 367
–380
.9.
Miller
, P.
, Coffey
, C.
, and DeVost
, V.
, “Heating in Crystalline Solids Due to Rapid Deformation
,” J. Appl. Phys.
0021-8979 https://doi.org/10.1063/1.336563, Vol. 59
, No. 3
, 1986
, pp. 913
–916
.10.
Key
, C.
, “An Apparatus for Determination of Impact Sensitivity of Materials in Contact With Liquid and Gaseous Oxygen at High Pressures
,” Materials Research and Standards
, ASTM International
, West Conshohocken, PA
, Vol. 11
, No. 6, 1971
, pp. 28–29 and 51–52.11.
Africano
, A.
, “Maximum Rate Theory of Impact Sensitivity
,” Advances in Cryogenic Engineering Materials
, Vol. 5
, Plenum
, New York
, 1960
, pp. 533
–544
.12.
Blackstone
, W.
and Ku
, P.
, “An Assessment of Impact Test Techniques for Determining the Fire or Explosion Hazards of Materials Exposed to Liquid Oxygen
,” Materials Research and Standards
, ASTM International
, West Conshohocken, PA
, Vol. 11
, No. 6, 1971
, pp. 30–35 and 52.13.
ASTM Standard G 63-92, “
Guide for Evaluating Nonmetallic Materials for Oxygen Service
,” Annual Book of ASTM Standards
, ASTM International
, West Conshohocken, PA
, 1992
.14.
“
Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments That Support Combustion
,” NASA STD 6001, 1998
.15.
“
Safety Standard for Oxygen and Oxygen Systems: Guidelines for Oxygen System Design, Materials Selection, Operations, Storage, and Transportation
,” NASA NSS 1740.15, 1996
.16.
Austin
, J.
, Hust
, J.
, and Clark
, A.
, “A Survey of Compatibility of Materials With High Pressure Oxygen Service
,” NASA-CR-120221, 1974
.17.
Werley
, B.
, Barthelemy
, H.
, Gates
, R.
, Slusser
, J.
, Wilson
, K.
, and Zawierucha
, R.
, “A Critical Review of Flammability Data for Aluminum
,“ Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Sixth Volume, ASTM STP 1197
, D. D.
Janoff
and J. M.
Stoltzfus
, Eds., ASTM International
, West Conshohocken, PA
, 1993
, pp. 300
–345
.18.
Lockhart
, B.
, Hampton
, M.
, and Bryan
, C.
, “The Oxygen Sensitivity / Compatibility Ranking of Several Materials by Different Test Methods
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fourth Volume, ASTM STP 1040
, J. M.
Stoltzfus
, F. J.
Benz
, and J. S
. Stradling
, Eds., ASTM International
, West Conshohocken, PA
, 1989
, pp. 93
–105
.19.
Schmidt
, H.
and Forney
, “ASRDI Oxygen Technological Survey
,” Oxygen Systems Engineering Review
, Vol. 9
, NASA SP-3090, 1975
.20.
Clark
, A.
and Hust
, J.
, “A Review of the Compatibility of Structural Materials With Oxygen
,” AIAA J.
0001-1452, Vol. 12
, No. 4
, 1974
, pp. 441
–454
.21.
Lowrie
, R.
, “Oxygen Compatibility of Metals and Alloys
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Sixth Volume, ASTM STP 1197
, D. D.
Janoff
and J. M.
Stoltzfus
, Eds., ASTM International
, West Conshohocken, PA
, 1993
, pp. 3
–23
.22.
Hust
, J.
and Clark
, A.
, “A Survey of Compatibility of Materials With High Pressure Oxygen Service
,” Cryogenics
0011-2275, Vol. 13
, 1973
, pp. 325
–336
.23.
ASTM Standard D 2512-95, “
Test Method for Compatibility of Materials With Liquid Oxygen (Impact Sensitivity Threshold and Pass-Fail Techniques)
,” Annual Book of ASTM Standards
, ASTM International
, West Conshohocken, PA
, 1995
.24.
ASTM Standard F 371-83, “
Test Method for Compatibility of Materials With Liquid Oxygen (Reaction Intensity Method)
,” Annual Book of ASTM Standards
, ASTM International
, West Conshohocken, PA
, 1994
.25.
ASTM Standard G 86-98, “
Test Method for Determining Ignition Sensitivity of Materials to Mechanical Impact in Ambient Liquid Oxygen and Pressurized Liquid and Gaseous Oxygen Environments
,” Annual Book of ASTM Standards
, ASTM International
, West Conshohocken, PA
, 1998
.26.
ASTM Standard D 2540-93, “
Test Method for Drop-Weight Sensitivity of Liquid Monopropellants
,” Annual Book of ASTM Standards
, ASTM International
, West Conshohocken, PA
, 1993
.27.
“
Ambient LOX Impact Testing
,” NASA-STD-6001: Test 13A, ED36-OWI-032 Rev A, 1999
.28.
“
High Pressure Impact Testing
,” NASA-STD-6001: Test 13B, ED36-OWI-033 Rev A, 1999
.29.
Srimivasan
, K.
, Jackson
, W.
, and Hinkley
, J.
, “Response of Composite Materials to Low Velocity Impact
,” 36th International SAMPE Symposium, 1991
, pp. 850
–862
.30.
Bransford
, J.
, Bryan
, C.
, Frye
, G.
, and Stohler
, S.
, “LOX/GOX Mechanical Impact Tester Assessment
,” NASA TM 74106, 1980
.31.
Key
, C.
and Riehl
, W.
, “Compatibility of Materials With Liquid Oxygen
,” NASA-TM X-985, 1964
.32.
Key
, C.
, “Compatibility of Materials With Liquid Oxygen I
,” NASA-TM X-64711, 1972
.33.
Key
, C.
, “Compatibility of Materials With Liquid Oxygen III
,” NASA-TM X-53533, 1966
.34.
Key
, C.
, “Compatibility of Materials With Liquid Oxygen IV
,” NASA-TM X-53773, 1968
.35.
Lucas
, W.
and Riehl
, W.
, “An Instrument for Determination of Impact Sensitivity of Materials in Contact With Liquid Oxygen
,” ASTM Bull
0365-7205, Vol. 244
, 1960
, pp. 29
–34
.36.
Riehl
, W.
, Key
, C.
, and Gayle
, J.
, “Reactivity of Titanium With Oxygen
,” NASA TR R-180, 1963
.37.
“
Materials Selection List for Space Hardware Systems
,” MSFC HDBK 527 Rev F JSC 09604 Rev F, 1988
.38.
“
Matrix and Coating Polymers for Composite LOX Containers
,” NASA Tech Briefs MFS-26541, 1990's.39.
Reed
, R.
, McCowan
, C.
, McColskey
, J.
, and Simon
, N.
, “Macro and Microreactions in Mechanical Impact Tests of Aluminum Alloys
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fifth Volume, ASTM STP 1111
, J. M.
Stoltzfus
and K.
McIlroy
, Eds., ASTM International
, West Conshohocken, PA
, 1991
, pp. 240
–259
.40.
Christianson
, R.
, “Oxygen Hazards Analysis of Composite Liquid Oxygen Tanks
,” WSTF-IR-93-0024, 1993
.41.
Lucas
, W.
and Riehl
, W.
, “An Instrument for Determination of Impact Sensitivity of Materials in Contact With Liquid Oxygen
,” DSN-TR-2-58, Redstone Arsenal, 1958
.42.
Moffett
, G.
, Pedley
, M.
, Schmidt
, N.
, and Linley
, L.
, “An Evaluation of the Liquid Oxygen Mechanical Impact Test
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fourth Volume, ASTM STP 1040
, J. M.
Stoltzfus
, F. J.
Benz
, and J. S.
Stradling
, Eds., ASTM International
, West Conshohocken, PA
, 1989
, pp. 11
–22
.43.
Currie
, J.
, Irani
, R.
, and Sanders
, J.
, “Factors Affecting the Impact Sensitivity of Solid Polymer Materials in Contact With Liquid Oxygen
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Third Volume, ASTM STP 986
, D. W.
Schroll
, Ed., ASTM International
, West Conshohocken, PA
, 1988
, pp. 233
–247
.44.
Bryan
, C.
and Olsen
, M.
, “Procedure for the Selection of Materials for Use in Oxygen Systems at the John F Kennedy Space Center
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Third Volume, ASTM STP 986
, D. W.
Schroll
, Ed., ASTM International
, West Conshohocken, PA
, 1988
, pp. 262
–267
.45.
Nguyen
, B.
and Pham
, B.
, “Assessing LOX Compatibility for Al-Li Alloys
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fifth Volume, ASTM STP 1111
, J. M.
Stoltzfus
and K.
McIlroy
, Eds., ASTM International
, West Conshohocken, PA
, 1991
, pp. 463
–474
.46.
Bryan
, C.
, “NASA Mechanical Impact Testing in High-Pressure Oxygen
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, ASTM STP 812
, B. L.
Werley
, Ed., ASTM International
, West Conshohocken, PA
, 1983
, pp. 9
–42
.47.
Jamison
, H.
, “Development of a Gaseous Oxygen Impact Testing Method
,” Materials Research and Standards
, ASTM International
, West Conshohocken, PA
, Vol. 11
, No. 6, 1971
, pp. 22
–27
.48.
Beeson
, H.
, Hshieh
, F.
, and Hirsch
, D.
, “Ignitibility of Advanced Composites in Liquid and Gaseous Oxygen
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Eigth Volume, ASTM STP 1319
, W. T.
Royals
, T. C.
Chou
, and T. A.
Steinberg
, Eds., ASTM International
, West Conshohocken, PA
, 1997
, pp. 421
–431
.49.
Hirsch
, D.
, Hshieh
, F.
, Beeson
, H.
, and Bryan
, C.
, “Ignitibility in Air, Gaseous Oxygen, and Oxygen-Enriched Environments of Polymers Used in Breathing - Air Devices
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Eigth Volume, ASTM STP 1319
, W. T.
Royals
, T. C.
Chou
, and T. A.
Steinberg
, Eds., ASTM International
, West Conshohocken, PA
, 1997
, pp. 359
–369
.50.
Jain
, A.
, Gunaji
, M.
, and Bryan
, C.
, “Evaluation of the Compatibility of Materials Used in Breathing Air Devices
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Seventh Volume, ASTM STP 1267
, D. D.
Janoff
, W. T.
Royals
, and M. V.
Gunaji
, Eds., ASTM International
, West Conshohocken, PA
, 1995
, pp. 184
–191
.51.
Chou
, T.
and Fiedorowicz
, A.
, “Oxygen Compatibility of Polymers Including TFE-Teflon, Kel-F 81, Vespel SP-21, Viton A, Viton A-500, Fluorel, Neoprene, EPDM, Buna-N, and Nylon 6,6
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
: Eighth Volume, ASTM STP 1319
, W. T.
Royals
, T. C.
Chou
, and T. A.
Steinberg
, Eds., ASTM International
, West Conshohocken, PA
, 1997
, pp. 319
–349
.52.
Vagnard
, G.
, Delode
, G.
, and Barthelemy
, H.
, “Test Methods and Interpretation of Results for Selecting Non-metallic Materials for Oxygen Service
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fifth Volume, ASTM STP 1111
, J. M.
Stoltzfus
and K.
McIlroy
, Eds., ASTM International
, West Conshohocken, PA
, 1991
, pp. 489
–505
.53.
Gerzeski
, R.
, “Improving the D2512 LOX Compatibility of Composites by Using Thermally Conductive Graphite Fibers
,” AFRL-ML-WP-TR-2005—4239, 2005
.54.
Pippen
, D.
and Stradling
, J.
, “Techniques for Determination of Flash and Fire Points and Impact Sensitivity of Materials in a Gaseous Oxygen Environment
,” Materials Research and Standards
, ASTM International
, West Conshohocken, PA
, Vol. 11
, No. 6, 1971
, pp. 35–43 and 52–53.55.
Shelley
, R.
, Christianson
, R.
, and Stoltzfus
, J.
, “Evaluation of Buna N Ignition Hazard in Gaseous Oxygen
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Sixth Volume, ASTM STP 1197
, D. D.
Janoff
and J. M.
Stoltzfus
, Eds., ASTM International
, West Conshohocken, PA
, 1993
, pp. 239
–251
.56.
Shelley
, R.
, Wilson
, D.
, and Beeson
, H.
, “Combustion Characteristics of Polymers as Ignition Promoters
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Sixth Volume, ASTM STP 1197
, D. D.
Janoff
and J. M.
Stoltzfus
, Eds., ASTM International
, West Conshohocken, PA
, 1993
, pp. 223
–238
.57.
Hshieh
, F.
, Bryan
, C.
, and Pedley
, M.
, “Communication: Autoignition Temperature of Carbon Filled Fluoroelastomers at Elevated Oxygen Pressure
,” Fire Mater.
0308-0501, Vol. 18
, 1994
, pp. 389
–390
.58.
Glassman
, I.
, Mellor
, A.
, Sullivan
, H.
, and Laurendeau
, N.
, “A Review of Metal Ignition and Flame Models
,‘ Princeton University
, Princeton, NJ
.59.
Akita
, K.
, “Ignition of Polymers and Flame Propagation on Polymer Surfaces
,” Aspects of Degradation and Stabilization of Polymers
, Elsevier Scientific
, New York
, 1978
, Chap. 10, pp. 501
–525
.60.
Kishore
, K.
, Nagarajan
, R.
, and Mohandas
, K.
, “Polymer Ignition—A Review
,” Polymer Eng. Rev.
0250-8079, Vol. 2
, No. 3
, 1983
, pp. 257
–293
.61.
Kishore
, K.
and Mohandas
, K.
, “Polymer Gasification Processes—A Review
,” Polymer Eng. Rev.
0250-8079, Vol. 2
, No. 3
, 1983
, pp. 189
–210
.62.
Kishore
, K.
, Mohandas
, K.
, and Annakutty
, K.
, “Is Gasification Rate Controlling Step in Polymer Ignition?
,” Combust. Sci. Technol
0010-2202, Vol. 31
, 1983
, pp. 183
–194
.63.
Kamiya
, Y.
and Niki
, E.
, “Oxidative Degradation.
,” Aspects of Degradation and Stabilization of Polymers
, Elsevier Scientific
, New York
, 1978
, Chap. 3, pp. 79
–147
.64.
Comyns
, A.
, Sanchez
, J.
, and Myers
, T.
, “Peroxides and Peroxide Compounds: Inorganic Peroxides; Organic Peroxides
,” Kirk-Othmer Encyclopedia of Chemical Technology
, 4th ed., John Wiley & Sons
, New York
, 1996
, Vol. 18
, pp. 202
–310
.65.
Kuo
, K.
, “Ignition
,” Principles of Combustion
, John Wiley & Sons
, New York
, 1986
, Chap. 10, pp. 734
–790
.66.
Carvalho
, M.
and Cruz-Pinto
, J.
, “The Kinetics of Photo-oxidation of Low-density Polyethylene Films
,” Polymer Engineering and Science
0032-3888, Vol. 32
, No. 8
, 1992\, pp. 567
–572
.67.
ASTM Standard E 1321-97a, “
Test Method for Determining Material Ignition and Flame Spread Properties
,” Annual Book of ASTM Standards
, ASTM International
, West Conshohocken, PA
, 1997
.68.
Hopewell
, J.
, Hill
, D.
, O'Donnell
, J.
, Pomery
, P.
, McGrath
, J.
, Priddy
, , D.
Jr., and Smith
, C.
, “The Radiation Chemistry of Poly (arylene ether phosphine oxide)s
,” Polymer Degradation and Stability
Vol. 45
, Elsevier Science Limited
, New York
, 1994
, pp. 293
–299
.69.
Yuen
, W.
, Greer
, D.
, Lin
, G.
, and Bryan
, C.
, “Modeling of the Transient Ignition of a Nonmetal/Oxygen System by Heterogeneous Reaction: Effects of Oxygen Pressure
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Third Volume, ASTM STP 986
, D. W.
Schroll
, Ed., ASTM International
, West Conshohocken, PA
, 1988
, pp. 191
–205
.70.
Glassman
, I.
, “Combustion Fundamentals of Low Volatility Materials in Oxygen-Enriched Atmospheres
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fifth Volume, ASTM STP 1111
, J. M.
Stoltzfus
and K.
McIlroy
, Eds., ASTM International
, West Conshohocken, PA
, 1991
, pp. 7
–25
.71.
Hirsch
, D.
, Bunker
, R.
, and Janoff
, D.
, “Effects of Oxygen Concentration, Diluents and Pressure on Ignition and Flame-Spread Rates of Nonmetals: A Review Paper
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fifth Volume, ASTM STP 1111
, J. M.
Stoltzfus
and K.
McIlroy
, Eds., ASTM International
, West Conshohocken, PA
, 1991
, pp. 179
–190
.72.
Tapphorn
, R.
, Shelley
, R.
, and Benz
, F.
, “Test Developments for polymers in Oxygen Enriched Environments
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Fifth Volume, ASTM STP 1111
, J. M.
Stoltzfus
and K.
McIlroy
, Eds., ASTM International
, West Conshohocken, PA
, 1991
, pp. 43
–59
.73.
Bransford
, J.
, “Ignition and Combustion Temperatures Determined by Laser Heating
,” Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres
, Second Volume, ASTM STP 910
, M. A.
Benning
, Ed., ASTM International
, West Conshohocken, PA
, 1986
, pp. 78
–97
.74.
Kishore
, K.
and Sankaralingam
, S.
, “Effect of Pressure on Polymer Ignition
,” J. Fire Sci.
0734-9041, Vol. 4
, 1986
, pp. 94
–99
.75.
Stuetz
, D.
, Diedwardo
, A.
, Zitomer
, F.
, and Barnes
, B.
, “Polymer Combustion
,” J. Polym. Sci., Polym. Chem. Ed.
0363-8855, Vol. 13
, 1975
, pp. 585
–621
.76.
Bowden
, F.
and Tabor
, D.
, Friction, An Introduction to Tribology
, Robert E. Krieger
, Malabar FL
, 1982
.77.
Bowden
, F.
and Tabor
, D.
, Friction and Lubrication
, Methuen & Co. LTD.
, London
, 1967
.78.
Bowden
, F.
and Ridler
, K.
, “Physical Properties of Surfaces III—The Surface Temperature of Sliding Metals the Temperature of Lubricated Surfaces
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 154
, 1936
, pp. 640
–656
..79.
Bowden
, F.
, Young
, J.
, and Rowe
, G.
, “Friction of Diamond, Graphite, and Carbon: The Influence of Adsorbed Films
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 212
, 1952
, pp. 485
–488
.80.
Bowden
, F.
, “The Mechanism of Friction
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 212
, 1952
, pp. 440
–449
.81.
Burwell
, J.
and Strang
, C.
, “Metallic Wear
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 212
, 1952
, pp. 470
–477
.82.
Bowden
, F.
and Thomas
, P.
, “The Surface Temperature of Sliding Solids
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 223
, No. 1152
, 1954
, pp. 29
–40
.83.
Pascoe
, M.
and Tabor
, D.
, “The Friction and Deformation of Polymers
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 235
, 1956
, pp. 210
–224
.84.
Archard
, J.
, “Elastic Deformation and the Laws of Friction
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 243
, No. 1233
, 1957
, pp. 190
–205
.85.
Greenwood
, J.
and Williamson
, J.
, “Contact of Nominally Flat Surfaces
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 295
, No. 1442
, 1996
, pp. 300
–319
.86.
Pooley
, C.
and Tabor
, D.
, “Friction and Molecular Structure: The Behaviour of Some Thermoplastics
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 329
, No. 1578
, 1972
, pp. 251
–274
.87.
Barber
, J.
, “The Conduction of HeatFrom Sliding Solids
,” Int. J. Heat Mass Transfer
0017-9310 https://doi.org/10.1016/0017-9310(70)90131-6, Vol. 13
, 1970
, pp. 857
–868
.88.
Cooper
, M.
, Mikic
, B.
, and Yovanovich
, M.
, “Thermal Contact Conductance
,” Int. J. Heat Mass Transfer
0017-9310 https://doi.org/10.1016/0017-9310(69)90011-8, Vol. 12
, 1969
, pp. 279
–300
.89.
Blok
, H.
, “Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Lubricating Conditions
,” Proceedings of the General Discussion on Lubrication and Lubricants
, Vol. 2
, 1937
, pp. 222
–235
.90.
Bowden
, F.
, “The Friction of Sliding Metals
,” Proceedings of the General Discussion on Lubrication and Lubricants
, Vol. 2
, 1937
, pp. 236
–240
.91.
Adam
, N.
, “Molecular Forces in Friction and Boundary Lubrication
,” Proceedings of the General Discussion on Lubrication and Lubricants
, Vol. 2
, 1937
, pp. 197
–201
.92.
Archard
, J.
, “The Temperature of Rubbing Surfaces
,” Wear
0043-1648 https://doi.org/10.1016/0043-1648(59)90159-0, Vol. 2
, 1958/1959, pp. 438
–455
.93.
Heighway
, R.
and Taylor
, D.
, “Transient Temperature Rises During the Rubbing of Metals on Glass
,” Wear
0043-1648, Vol. 9
, No. 4
, 1966
, pp. 310
–319
.94.
Moore
, D.
and Geyer
, W.
, “A Review of Adhesion Theories for Elastomers
,” Wear
0043-1648, Vol. 22
, No. 2
, 1972
, pp. 113
–141
.95.
Quin
, T.
and Winer
, W.
, “The Thermal Aspects of Oxidational Wear
,” Wear
0043-1648 https://doi.org/10.1016/0043-1648(85)90092-4, Vol. 102
, 1985
, pp. 67
–80
.96.
Bhawani
, S.
, Tripathy
, T.
, and Furey
, M.
, “Tribological Behavior of Unidirectional Graphite-Epoxy and Carbon-PEEK Composites
,” Wear
0043-1648, Vol. 162–164
, 1993
, pp. 385
–396
.97.
Santner
, E.
and Czichos
, H.
, “Tribology of polymers
,” Tribol. Int.
0301-679X https://doi.org/10.1016/0301-679X(89)90170-9, Vol. 22
, No. 2
, 1989
, pp. 103
–109
.98.
Archard
, J.
, “Contact and Rubbing of Flat Surfaces
,” J. Appl. Phys.
0021-8979 https://doi.org/10.1063/1.1721448, Vol. 24
, 1954
, pp. 981
–988
.99.
Roselman
, I.
and Tabor
, D.
, “The Friction of Carbon Fibres
,” J. Phys. D
0022-3727 https://doi.org/10.1088/0022-3727/9/17/012, Vol. 9
, 1976
, pp. 2517
–2532
.100.
Tobler
, R.
, “A Review of Antifriction Materials and Design for Cryogenic Environments
,” Advances in Cryogenic Engineering Materials
, Vol. 26
, Plenum
, New York
, 1980
, pp. 66
–77
.101.
Iwabuchi
, A.
, Honda
, T.
, and Tani
, J.
, “Tribological Properties at Temperatures of 293, 77, and 4 K in Fretting
,” Cryogenics
0011-2275, Vol. 29
, No. 2
, 1989
, pp. 124
–131
.102.
Michael
, P.
, Aized
, D.
, Rabinowicz
, E.
, and Iwasa
, Y.
, “Mechanical Properties and Static Friction Behaviour of Epoxy Mixes at Room Temperature and at 77 K
,” Cryogenics
0011-2275, Vol. 30
, 1990
, pp. 775
–786
.103.
Tian
, X.
and Kennedy
, F.
, Jr., “Contact Surface Temperature Models for Finite Bodies in Dry and Boundary Lubricated Sliding
,” J. Tribol
0742-4787, Vol. 115
, 1993
, pp. 411
–418
.104.
Tian
, X.
and Kennedy
, F.
, Jr., “Maximum and Average Flash Temperatures in Sliding Contacts
,” J. Tribol
0742-4787, Vol. 116
, 1994
, pp. 167
–174
.105.
Cowan
, R.
and Winer
, W.
, “Frictional Heating Calculations
,” ASM Handbook: Friction, Lubrication, and Wear Technology
, Vol. 18
, Chap. Solid Friction
, 1992
, pp. 39
–44
.106.
Shim
, H.
, Kwon
, O.
, and Youn
, J.
, “Effects of Structure and Humidiy on Friction and Wear Properties of Carbon Fiber Reinforced Epoxy Composites
,” Conference Proceedings, in Search of Excellence Annual Technical Conference, ANTEC 91
, pp. 1997
–1999
.107.
Lincoln
, B.
, “Frictional and Elastic Properties of High Polymeric Materials.
,” Br. J. Appl. Phys.
0508-3443, Vol. 3
, 1952
, pp. 260
–263
.108.
Howell
, H.
and Mazur
, J.
, “Amonton's Law and Fibre Friction
,” J. Text. Inst.
0040-5000, Vol. 44
, 1953
, pp. T59
–T69
.109.
King
, R.
and Tabor
, D.
, “The Effect of Temperature on the Mechanical Properties and the Friction of Plastics
,” Proc. Phys. Soc. London, Sect B
0370-1301 https://doi.org/10.1088/0370-1301/66/9/302, Vol. 66
, 1953
, pp. 728
–736
.110.
Shooter
, K.
and Tabor
, D.
, “The Frictional Properties of Plastics
,” Proc. Phys. Soc. London, Sect. B
0370-1301 https://doi.org/10.1088/0370-1301/65/9/302, Vol. 65
, 1952
, pp. 661
–671
.111.
Pascoe
, M.
and Tabor
, D.
, “Friction of Nylon as a Function of Load and Surface Curvature
,” Research Correspondence
(a Supplement issued with “ Research: A Journal of Science and Its Applications
), Vol. 8
, No. 4
, 1955
, pp. S15
–S17
.112.
Gecim
, B.
and Winer
, W.
, “Transient Temperatures in the Vicinity of an Asperity Contact
,” Journal of Tribology Technology
, Vol. 107
, No. 3
, 1985
, pp. 333
–342
.113.
Quinn
, T.
and Winer
, W.
, “An Experimental Study of the “Hot Spots” Occurring During the Oxidational Wear of Tool Steel on Sapphire
,” Journal of Tribology Technology
, Vol. 109
, No. 2
, 1987
, pp. 315
–320
.114.
Argon
, A.
, Backer
, S.
, McClintock
, F.
, Reichenbach
, G.
, Orowan
, E.
, Shaw
, M.
, and Rabinowicz
, E.
, “Friction and Wear
,” Mechanical Behavior of Materials
, F.
McClintock
and A.
Argon
, Eds., Addison-Wesley
, Reading, MA
, 1966
, Chap. 20, pp. 657
–673
.115.
Lawn
, B.
, “Indentation Fracture
,” Fracture of Brittle Solids
, 2nd ed., Cambridge University Press
, Cambridge
, 1993
, Chap. 8, pp. 249
–306
.116.
Lawn
, B.
, “Crack initiation: Flaws
,” Fracture of Brittle Solids
, 2nd ed., Cambridge University Press
, Cambridge
, 1993
, Chap. 9, pp. 307
–334
.117.
Lawn
, B.
and Swain
, M.
, “Microfracture Beneath Point Indentations in Brittle Solids
,” J. Mater Sci.
0022-2461 https://doi.org/10.1007/BF00541038, Vol. 10
, No. 1
, 1975
, pp. 113
–122
.118.
Lawn
, B.
and Wilshaw
, R.
, “Review Indentation Fracture: Principles and Applications.
,” J. Mater Sci.
0022-2461 https://doi.org/10.1007/BF00823224, Vol. 10
, No. 6
, 1975
, pp. 1049
–1081
.119.
Lawn
, B.
, Wiederhorn
, S.
, and Roberts
, D.
, “Effect of Sliding Friction Forces on the Strength of Brittle Materials
,” J. Mater. Sci.
0022-2461, Vol. 19
, 1984
, pp. 2561
–2569
.120.
Hamilton
, G.
and Goodman
, L.
, “The Stress Field Created by a Circular Sliding Contact
,” J. Appl. Mech.
0021-8936, Vol. 33
, No. 2
, Series E, 1966
, pp. 371
–376
.121.
Lawn
, B.
, “Hertzian Fracture in Single Crystals with the Diamond Structure
,” J. Appl. Phys.
0021-8979 https://doi.org/10.1063/1.1655847, Vol. 39
, No. 10
, 1968
, pp. 4828
–4836
.122.
Langitan
, F.
and Lawn
, B.
, “Hertzian Fracture Experiments on Abraded Glass Surfaces as Definitive Evidence for an Energy Balance Explanation of Aurbach's Law
,” J. Appl. Phys.
0021-8979 https://doi.org/10.1063/1.1657136, Vol. 40
, No. 10
, 1969
, pp. 4009
–4017
.123.
Wilshaw
, T.
, “The Hertzian Fracture Test
,” J. Phys. D
0022-3727 https://doi.org/10.1088/0022-3727/4/10/316, Vol. 4
, 1971
, pp. 1567
–1581
.124.
Frank
, F.
and Lawn
, B.
, “On the Theory of Hertzian Fracture
,” Proc. R. Soc. London, Ser. A
0950-1207, Vol. 299
, No. 1458
, 1967
, pp. 291
–306
.125.
Lawn
, B.
, “Partial Cone Crack Formation in a Brittle Material Loaded with a Sliding Spherical Indenter
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 299
, No. 1458
, 1967
, pp. 307
–316
.126.
Lawn
, B.
, Wilshaw
, T,
and Hartley
, E.
, “A computer Simulation Study of Hertzian Cone Crack Growth
,” Int. J. Fract.
0376-9429 https://doi.org/10.1007/BF00955075, Vol. 10
, No. 1
, 1974
, pp. 1
–16
.127.
Cotterell
, B.
, Kamminga
, J.
, and Dickson
, F.
, “The Essential Mechanics of Conchoidal Flaking
,” Int. J. Fract.
0376-9429, Vol. 29
, No. 4
, 1985
, pp. 205
–221
.128.
Evans
, A.
, “Strength Degradation by Projectile Impacts
,” J. Am. Ceram. Soc.
0002-7820 https://doi.org/10.1111/j.1151-2916.1973.tb12710.x, Vol. 56
, No. 8
, 1973
, pp. 405
–409
.129.
Tillett
, J.
, “Fracture of Glass by Spherical Indenters
,” Proc. Phys. Soc. London, Sect. B
0370-1301 https://doi.org/10.1088/0370-1301/69/1/306, Vol. 69
, No. 433B
, Part 1, 1956
, pp. 47
–54
.130.
Roesler
, F.
, “Indentation Hardness of Glass as an Energy Sealing Law
,” Proc. Phys. Soc. London, Sect. B
0370-1301, Vol. 69
, No. 433B
, Part 1, 1956
, pp. 55
–60
.131.
Roesler
, F.
, “Brittle Fractures Near Equilibrium
,” Proc. Phys. Soc. London, Sect B
0370-1301, Vol. 69
, No. 433B
, Part 1, 1956
, pp. 981
–992
.132.
Personal discussions with Dr. Robert Crane (Chief Scientist AFRL/MLB), Summer and Fall 2004.
133.
Beek
, J.
and Lawn
, B.
, “An Environmental Chamber for Hertzian Fracture Testing
,” J. Phys. E
0022-3735 https://doi.org/10.1088/0022-3735/5/7/031, Vol. 5
, No. 7
, 1972
, pp. 710
–712
.134.
Langitan
, F.
and Lawn
, B.
, “Effect of a Reactive Environment on the Hertzian Strength of Brittle Solids
,” J. Appl. Phys.
0021-8979 https://doi.org/10.1063/1.1659425, Vol. 41
, No. 8
, 1970
, pp. 3357
–3365
.135.
Swain
, M.
and Lawn
, B.
, “A Microprobe Technique for Measuring Slow Crack Velocities in Brittle Solids
,” Int. J. Fract.
0376-9429, Vol. 9
, No. 4
, 1973
, pp. 481
–483
.136.
Swain
, M.
, Williams
, J.
, Lawn
, B.
, and Beek
, J.
, “A Comparative Study of the Fracture of Various Silica Modifications Using the Hertzian Test
,” J. Mater Sci.
0022-2461 https://doi.org/10.1007/BF00632767, Vol. 8
, No. 8
, 1973
, pp. 1153
–1164
.137.
Benbow
, J.
, “Cone Cracks in Fused Silica
,” Proc. Phys. Soc. London
0370-1328, Vol. 75
, No. 5
, 1960
, pp. 697
–699
.138.
Mikosza
, A.
and Lawn
, B.
, “Section and Etch Study of Hertzian Fracture Mechanics
,” J. Appl. Phys.
0021-8979 https://doi.org/10.1063/1.1659977, Vol. 42
, No. 13
, 1971
, pp. 5540
–5545
.139.
Gilroy
, D.
and Hirst
, W.
, “Brittle Fracture of Glass Under Normal and Sliding Loads
,” J. Phys. D
0022-3727, Vol. 2
, No. 2
, 1969
, pp. 1784
–1787
.140.
Powell
, B.
and Tabor
, D.
, “The Fracture of Titanium Carbide Under Static and Sliding Contact
,” J. Phys. D
0022-3727 https://doi.org/10.1088/0022-3727/3/5/320, Vol. 3
, No. 5
, 1970
, pp. 783
–788
.141.
Argon
, A.
, Hori
, Y.
, and Orowan
, E.
, “Indentation Strength of Glass
,” J. Am. Ceram. Soc.
0002-7820 https://doi.org/10.1111/j.1151-2916.1960.tb13646.x, Vol. 43
, No. 2
, 1960
, pp. 86
–96
.142.
Nadeau
, J.
, “Hertzian Fracture of Vitreous Carbon
,” J. Am. Ceram. Soc.
0002-7820 https://doi.org/10.1111/j.1151-2916.1973.tb12525.x, Vol. 56
, No. 9
, 1973
, pp. 467
–471
.143.
Keshavan
, M.
, “Hertzian Fracture of Pyrex Glass Under Quasi-Static Loading Conditions
,” Dissertation, Department of Metallurgical Engineering and Materials Science, University of Kentucky
, Lexington, Ky, 1978
.144.
Alderson
, K.
and Evans
, K.
, “Low Velocity Transverse Impact of Filament-Wound Pipes: Part 1. Damage Due to Static and Impact Loads
,” Compos. Struct.
0263-8223, Vol. 20
, 1992
, pp. 37
–45
.145.
Choi
, H.
, Downs
, R.
, and Chang
, F.
, “A New Approach Toward Understanding Damage Mechanisms and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part I—Experiments
,” J. Compos. Mater.
0021-9983, Vol. 25
, No. 8
, 1991
, pp. 992
–1011
.146.
Choi
, H.
, Wu
, H.
, and Chang
, F.
, “A New Approach Toward Understanding Damage Mechanisms and Mechanics of Laminated Composites Due to Low-Velocity Impact: Part II—Analysis
,” J. Compos. Mater.
0021-9983, Vol. 25
, No. 8
, 1991
, pp. 1012
–1038
.147.
Lagace
, P.
, Williamson
, J.
, Tsang
, P.
, Wolf
, E.
, and Thomas
, S.
, “The Use of Force as a (Impact) Damage Resistance Parameter
,” Proceedings of the American Society for Composites, Seventh Technical Conference
, 1992
, Pennsylvania State University
, University Park, PA
, pp. 991
–1000
.148.
Ong
, C.
, Hong
, T.
, and Huang
, J.
, “Studies of Impacted Composite Laminates
,” Proceedings of 38th International SAMPE Symposium
, Vol. 138
Book 1, 1993
, Anaheim, CA
, pp. 978
–987
.149.
Salpekar
, S.
, “Analysis of Delamination in Cross-Ply Laminates Initiating From Impact Induced Matrix Cracking
,” J. Compos. Technol. Res.
0884-6804, Vol. 15
, No. 2
, 1993
, pp. 88
–94
.150.
Sierakowski
, R.
and Newaz
, G.
, “Key Elements in Damage Tolerance Concept for Polymeric Composites.
,” Proceedings of the American Society for Composites, Eighth Technical Conference
, 1993
, Ohio Aerospace Institute
, Celveland, OH
, pp. 640
–649
.151.
Clark
, G.
, “Modelling of Impact Damage in Composite Laminates
,” Composites
0010-4361, Vol. 20
, No. 3
, 1989
, pp. 209
–214
.152.
Gosse
, J.
and Mori
, P.
, “Impact Damage Characterization of Graphite/Epoxy Laminates
,” Proceedings of The American Society For Composites, Third Technical Conference
, 1998
, University of Washington
, Seattle, WA
, pp. 344
–353
.153.
Hertzberg
, P.
, Smith
, B.
, and Miller
, A.
, “Effect of Matrix Resin on the Impact Fracture Characteristics of Graphite-Epoxy Laminates
,” NASA CR 165784, 1982
.154.
Kwon
, Y.
and Sankar
, B.
, “Indentation—Flexure and Low—Velocity Impact Damage in Graphite Epoxy Laminates
,” J. Compos. Technol. Res.
0884-6804, Vol. 15
, No. 2
, 1993
, pp. 101
–111
.155.
Nettles
, A.
and Douglas
, M.
, “A Comparison of Quasi-Static Indentation to Low-Velocity Impact
,” NASA TP-2000-210481, 2000
.156.
Nettles
, A.
and Hodge
, A.
, “The Impact Response of Carbon/Epoxy Laminates
,” NASA TM-97-206317, 1997
.157.
Pinnell
, M.
and Sjoblom
, P.
, “Low-Velocity Impact Testing of Thermoplastic and Thermoset Matrix Composite Materials
,” WRDC-TR-90-4078, 1
–46
, 1990
.158.
Aoki
, R.
, “Behaviour of Idealized Discontinuities and Impact Damages in CFRP Under Fatigue Loading
,” Characterization, Analysis and Significance of Defects in Composite Materials, AGARD Conference Proceedings
No. 355
, Neuilly Sur Seine France
, pp. 11-1
–11-10
, 1983
.159.
Srinivasan
, K.
, Jackson
, W.
, Smith
, B.
, and Hinkley
, J.
, “Characterization of Damage Modes In Impacted Thermoset and Thermoplastic Composites.
,” J. Reinf Plast. Compos.
0731-6844, Vol. 11
, No. 10
, 1992
, pp. 1111
–1126
.160.
Masters
, J.
, Courter
, J.
, and Evans
, R.
, “Impact Fracture and Failure Suppression Using Interleafed Composites
,” Proceedings of 31st International SAMPE Symposium
, Vol. 31
, 1986
, Chicago, IL
, pp. 844
–858
.161.
Rice
, B.
and Kim
, R.
, “Fracture Characterization of Toughened Bismaleimide/Graphite Composites
,” Proceedings of 35th International SAMPE Symposium
, Vol. 35
, 1990
, Anaheim, CA
, pp. 455
–467
.162.
Williams
, J.
, Anderson
, M.
, Rhodes
, M.
, Starnes
, J.
, and Stroud
, W.
, “Recent Developments In The Design, Testing and Impact-Damage Tolerance of Stiffened Composite Panels
,” NASA TM 80077, 1979
.163.
Sjoblom
, P.
, Hartness
, T.
, and Cordell
, T.
, “On Low-Velocity Impact Testing of Composite Materi- als
,” J. Compos. Mater.
0021-9983, Vol. 22
, No. 1
, 1998
, pp. 30
–52
.164.
Buynak
, C.
, Moran
, T.
, and Donaldson
, S.
, “Characterization of Impact Damage in Composites
,” SAMPE J.
0091-1062, Vol. 24
, No. 2
, 1988
, pp. 35
–39
.165.
Byers
, B.
, “Behavior of Damaged Graphite/Epoxy Laminates Under Compression Loading
,” NASA CR-159293, 1980
.166.
Cordell
, T.
and Sjoblom
, P.
, “Low Velocity Impact Testing of Composites
,” Proceedings of The American Society For Composites, First Technical Conference
, 1986
, pp. 297
–312
.167.
Feraboli
, P.
, Ireland
, D.
, and Kedward
, K.
, “On The Role of Force, Energy and Stiffness In Low Velocity Impact Events.
,” Proceedings of The American Society For Composites, Eighteenth Technical Conference
, 2003
, University of Florida
, Gainesville, FL
.168.
Friedrich
, L.
and Preston
, J.
, “Impact Resistance of Fiber Composite Blades Used in Aircraft Turbine Engines
,” NASA CR-134502, 1973
.169.
Garcia
, R.
and Rhodes
, D.
, “Effects of Low-Velocity Impact on Gr/Pi Compression Laminates.
,” NASA CP 2079, 239
–248
, 1979
.170.
Joshi
, S.
and Sun
, C.
, “Impact Induced Fracture in a Laminated Composite
,” J. Compos. Mater.
0021-9983, Vol. 19
, 1985
, pp. 51
–66
.171.
Kwon
, Y.
and Sankar
, B.
, “Indentation Damage in Graphite / Epoxy Laminates
,” Proceedings of the American Society for Composites, Sixth Technical Conference
, 1991
, Rensselaer Polytechnic Institute
, Albany, NY
, pp. 483
–492
.172.
Lee
, W.
, “Damage Assessment in Graphite Fiber/Polymer Composites Using Acoustic Emission and Ultrasonics Techniques
,” Proceedings of The American Society For Composites, Fifth Technical Conference
, 1990
, Michigan State University
, East Lansing, MI
, pp. 955
–967
.173.
Starnes
, J.
, Rhodes
, M.
, and Williams
, J.
, “The Effect of Impact Damage and Circular Holes on The Compressive Strength of A Graphite Epoxy Laminate
,” NASA TM 78796, 1978
.174.
Morita
, H.
, Hamamoto
, A.
, Adachi
, T.
, Nishimori
, K.
, and Matsumoto
, H.
, “Influence of Impact Velocity and Lay-Up Parameter on Impact Damage Resistance of CF/PEEK Laminates
,” 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and AIAA/ASME Adaptive Structures Forum, Part 2
, AIAA-95-1284-CP, 1995
, New Orleans, LA
, pp. 1093
–1100
.175.
Preston
, J.
and Cook
, T.
, “Impact Response of Graphite Epoxy Flat Laminates Using Projectiles That Simulate Aircraft Engine Encounters
,” Foreign Object Impact Damage to Composites, STP 568
, ASTM International
, West Conshohocken, PA
, 1975
, pp. 49
–71
.176.
Rhodes
, M.
, Williams
, J.
, and Starnes
, J.
, “Low-Velocity Impact Damage in Graphite Fiber Reinforced Epoxy Laminates
,” 34th Annual Conference, Reinforced Plastics/Composite Institute
, Society of The Plastics Industry, Inc.
, San Diego, CA
, 1979
.177.
Williams
, J.
, and Rhodes
, M.
, “The Effect of Resin on The Impact Damage Tolerance of Graphite Epoxy Laminates
,” NASA TM 83213, 1981
.178.
Bowden
, F.
and Lebin
, L.
, “The Nature of Sliding and the Analysis of Friction
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 167
, 1939
, pp. 371
–391
.179.
Bowden
, F.
and Young
, J.
, “Friction of Diamond, Graphite, and Carbon and the Influence of Surface Films
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 208
, 1951
, pp. 444
–455
.180.
Shooter
, K.
, “Frictional Properties of Plastics
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 212
, 1952
, pp. 488
–491
.181.
King
, R.
and Tabor
, D.
, “The Strength Properties and Frictional Behaviour of Brittle Solids
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 223
, 1954
, pp. 225
–238
.182.
Hirst
, W.
and Lancaster
, J.
, “The Influence of Oxide and Lubricant Films on the Friction and Surface Damage of Metals
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 223
, 1954
, pp. 324
–338
.183.
Bowden
, F.
and Persson
, P.
, “Deformation, Heating and Melting of Solids in High-speed Friction
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 260
, No. 1303
, 1961
, pp. 433
–458
.184.
Grosch
, K.
, “The Relation Between the Friction and Visco-elastic Properties of Rubber
,” Proc. R. Soc. London, Ser A
0950-1207, Vol. 274
, No. 1356
, 1963
, pp. 21
–39
.185.
Jaeger
, J.
, “Moving Sources of Heat and the Temperature at Sliding Contacts
,” J. Proc. R. Soc. N. S. W.
0035-9173, Vol. 76
, No. 28
, 1942
, pp. 203
–224
.186.
Vick
, B.
, Furey
, M.
, and Foo
, S.
, “Boundary Element Thermal Analysis of Sliding Contact
,” Numer. Heat Transfer, Part A
1040-7782, Vol. 20
, 1991
, pp. 19
–40
.187.
Furey
, M.
, Vick
, B.
, Foo
, S.
, and Weick
, B.
, “A Theoretical and Experimental Study of Surface Temperatures Generated During Fretting
,” Proceedings Japan International Tribology Conference
, Nagoya
, Vol. II
, 1990
, pp. 809
–814
.188.
Blok
, H.
, “Measurement of Temperature Flashes on Gear Teeth Under Extreme Pressure Conditions
,” Proceedings of the General Discussion on Lubrication and Lubricants, Vol. 2
, 1937
, pp. 14
–20
.189.
Blok
, H.
, “The Flash Temperature Concept
,” Wear
0043-1648 https://doi.org/10.1016/0043-1648(63)90283-7, Vol. 6
, 1963
, pp. 483
–494
.190.
McLaren
, K.
and Tabor
, D.
, “The Friction and Deformation Properties of Irradiated Polytetrafluoroethylene (PTFE)
,” Wear
0043-1648, Vol. 8
, No. 1
, 1965
, pp. 3
–7
.191.
McLaren
, K.
and Tabor
, D.
, “Friction of Polymers at Engineering Speeds: Influence of Speed, Temperature and Lubricants
,” Wear
0043-1648, Vol. 8
, No. 1
, 1965
, pp. 79
–83
.192.
Eliezer
, Z.
, Schulz
, C.
, and Barlow
, J.
, “Friction and Wear Properties of an Epoxy-Steel System
,” Wear
0043-1648, Vol. 46
, No. 2
, 1978
, pp. 397
–403
.193.
Hanmin
, Z.
, Guoren
, H.
, and Guicheng
, Y.
, “Friction and Wear of Poly(phenylene sulphide) and its carbon fibre composites: I Unlubricated
,” Wear
0043-1648, Vol. 116
, No. 1
, 1987
, pp. 59
–68
.194.
Bassani
, R.
, Levita
, G.
, Meozzi
, M.
, and Palla
, G.
, “Friction and Wear of Epoxy Resin on Inox Steel: Remarks on the Influence of Velocity, Load and Induced Thermal State
,” Wear
0043-1648, Vol. 247
, No. 2
, 2001
, pp. 125
–132
.195.
Blau
, P.
and Martin
, R.
, “Friction and Wear of Carbon-Graphite Materials Against Metal and Ceramic Counterfaces
,” Tribol. Int.
0301-679X, Vol. 27
, No. 6
, 1994
, pp. 413
–422
.196.
Briscoe
, B.
, “Wear of Polymers: An Essay on Fundamental Aspects
,” Tribol. Int.
0301-679X, Vol. 14
, No. 4
, 1981
, pp. 231
–243
.197.
Tewari
, U.
, Sharma
, S.
, and Vasudevan
, P.
, “Friction and Wear Studies of a Bismaleimide
,” Tribol. Int.
0301-679X, Vol. 21
, No. 1
, 1988
, pp. 27
–30
.198.
Savage
, R.
, “Graphite Lubrication
,” J. Appl. Phys.
0021-8979 https://doi.org/10.1063/1.1697867, Vol. 19
, No. 1
, 1948
, pp. 1
–10
.199.
Bowers
, R.
, “Coefficient of Friction of High Polymers as a Function of Pressure
,” J. Appl. Phys.
0021-8979 https://doi.org/10.1063/1.1659881, Vol. 42
, No. 12
, 1971
, pp. 4961
–4970
.200.
Stone
, E.
and Young
, W.
, “Coefficient of Friction Measurements of Fiberglass/Epoxy at Cryogenic Temperatures
,” Advances in Cryogenic Engineering Materials
, Plenum
, New York
, 1980
, Vol. 26
, pp. 315
–318
.201.
Wisander
, D.
and Johnson
, R.
, “Wear and Friction of Impregnated Carbon Seal Materials in Liquid Nitrogen and Hydrogen
,” Advances in Cryogenic Engineering Materials
, Plenum
, New York
, 1961
, Vol. 6
, pp. 210
–218
.202.
Wisander
, D.
, Hady
, W.
, and Johnson
, R.
, “Friction Studies of Various Materials in Liquid Nitrogen
,” Advances in Cryogenic Engineering Materials
, Plenum
, New York
, 1960
, Vol. 3
, pp. 390
–406
.203.
Michael
, P.
, Rabinowicz
, E.
, and Iwasa
, Y.
, “Friction and Wear of Polymeric Materials at 293, 77 and 4.2 K
,” Cryogenics
0011-2275, Vol. 31
, No. 8
, 1991
, pp. 695
–704
.204.
Jianjun
, Q.
, Yunxia
, L.
, Zhiqian
, Z.
, Yulin
, Q.
, and Xiaoquang
, L.
, “Study of Sliding Friction and Wear Properties of Bismaleimide and Its Composite Against AL
,” Proceedings, Eleventh International Conference on Composite Materials
, Woodhead
, 1997
, pp. 856
–865
.205.
Lancaster
, J.
, “Transitions in the Friction and Wear of Carbons and Graphites Sliding Against Themselves
,” ASLE Trans.
0569-8197, Vol. 18
, No. 3
, 1975
, pp. 187
–200
.206.
Tanaka
, K.
and Yamada
, Y.
, “Effect of Temperature on the Friction and Wear of Some Heat—Resistant Polymers
,” Polymer Wear and Its Control
, ACS
, 1985
, pp. 103
–128
.207.
Shooter
, K.
and Thomas
, P.
, “Frictional Properties of Some Plastics
,” Research, A Journal of Science and Its Application
, Vol. 2
, No. 11
, 1949
, pp. 533
–535
.208.
Devine
, M.
and Kroll
, A.
, “Aromatic Polyimide Compositions for Solid Lubrication
,” Journal of the American Society of Lubrication Engineers
, Vol. 20
, 1964
, pp. 225
–230
.209.
Hearle
, J.
and Tabor
, D.
, “Frictional Behaviour of Textiles
,” Physical Methods of Investigating Textiles Interscience
, New York
, 1959
, Chap. 11, pp. 301
–319
.210.
Yoshikawa
, M.
, Satoh
, T.
, Inubushi
, S.
, Ikeda
, T.
, and Tazuke
, S.
, “Anti-abrasion and Low Friction Properties of Solid Lubricant—Aminimide Cured Epoxy Resin Composites
,” J. Mater Sci. Lett.
0022-2461, Vol. 5
, No. 5
, 1986
, pp. 1239
–1241
.211.
Bowden
, P.
, “The Effect of Hydrostatic Pressure on the Fibre-Matrix Bond in a Steel-Resin Model Composite
,” J. Mater Sci.
0022-2461, Vol. 5
, 1970
, pp. 517
–520
.212.
Harris
, B.
, Morley
, J.
, and Phillips
, D.
, “Fracture Mechanisms in Glass-Reinforced Plastics
,” J. Mater Sci.
0022-2461, Vol. 10
, 1975
, pp. 2050
–2061
213.
Fusaro
, R.
, “Friction and Wear Life Properties of Polyimide Thin Films
,” NASA TN D-6914, 1972
.214.
Fusaro
, R.
, “Friction Transition in Polyimide Films as Related to Molecular Relaxations and Structure
,” NASA TN D-7954, 1975
.215.
Fusaro
, R.
, “Tribological Properties at 25 C of Seven Polyimide Films Bonded to 440C High-Temperature Stainless Steel
,” NASA TP-1944, 1982
.216.
Skinner
, J.
, Gane
, N.
, and Tabor
, D.
, “Micro-friction of Graphite
,” Nature (London), Phys. Sci.
0300-8746, Vol. 232
, 1971
, pp. 195
–196
.217.
Dialead Coal Tar Pitch Carbon Fiber
, Mitsubishi Chemical
, 1
–26
, 2000
.218.
“
Space Materials Update Seminar: K-1100X Prepregs for Thermal Management and 954-2A and 954-3 Cyanate Ester Prepregs
,” ICI Fiberite—Tempe Products, 1994
.219.
Radcliffe
, D.
and Posenberg
, H.
, “The Thermal Conductivity of Glass-fibre and carbon-fibre/epoxy composites from 2 to 80 K
,” Cryogenics
0011-2275, Vol. 22
, No. 5
, 1995
, pp. 245
–249
.220.
Nicholis
, C.
and Rosenberg
, H.
, “The Thermal Conductivity of Carbon-Carbon Fibre Composites Below 80 K
,” Cryogenics
0011-2275, Vol. 24
, No. 7
, 1984
, pp. 355
–358
.221.
Hartwig
, G.
and Knaak
, S.
, “Fibre-Epoxy Composites at Low Temperatures
,” Cryogenics
0011-2275 https://doi.org/10.1016/0011-2275(84)90083-3, Vol. 24
, No. 11
, 1984
, pp. 639
–647
.222.
Bansemir
, H.
and Haider
, O.
, “Basic Material Data and Structural Analysis of Fibre Composite Components for Space Application
,” Cryogenics
0011-2275, Vol. 31
, No. 4
, 1991
, pp. 298
–306
.223.
Bansemir
, H.
and Haider
, O.
, “Fibre Composite Structures for Space Applications–Recent and Future Developments
,” Cryogenics
0011-2275, Vol. 38
, No. 1
, 1998
, pp. 51
–59
.224.
Choy
, C.
, “Thermal Conductivity of Polymers
,” Polymer
0032-3861 https://doi.org/10.1016/0032-3861(77)90002-7, Vol. 18
, 1977
, pp. 984
–1004
.225.
Yokoyama
, H.
, “Thermal Conductivity of Polyimide Film at Cryogenic Temperature
,” Cryogenics
0011-2275, Vol. 135
, No. 11
, 1995
, pp. 799
–800
.226.
Greig
, D.
, “Low Temperature Thermal Conductivity of Polymers
,” Cryogenics
0011-2275, Vol. 28
, No. 4
, 1998
, pp. 243
–247
.227.
Wilkinson
, S.
, “Toughened Bismaleimides, Their Carbon Fiber Composites and Interphase Evaluation Studies
,” Dissertation, Virgina Polytechnic Institute
, 1991
, Chap. 6, pp. 274
–337
.228.
Gutowski
, W.
, “Effect of Fiber-Matrix Adhesion on Mechanical Properties of Composites
,” Controlled Interphases In Composite Materials
, Elsevier Science
, New York
, 1990
, pp. 505
–520
.229.
Verpoest
, I.
, Desaeger
, M.
, and Keunings
, R.
, “Critical Review of Direct Micromechanical Test Methods for Interfacial Strength Measurements in Composites
,” Controlled Interphases in Composite Materials
, Elsevier Science
, 653
–666
, 1990
.230.
Gaur
, U.
, Chou
, C.
, and Miller
, B.
, “Interfacial Adhesion in Carbon Reinforced Thermosetting and Thermoplastic Composites
,” Proceedings, American Society for Composites, 6th Tech Conference
, 1991
, pp. 751
–758
.231.
Orso
, J.
and Vizzini
, A.
, “The Effects of an Expanding Monomer on the Tensile Properties of Graphite/Epoxy
,” Proceedings, American Society for Composites, 6th Tech Conference
, 1991
, pp. 211
–220
.232.
Chua
, P.
and Piggott
, M.
, “The Glass Fibre-Polymer Interface: I—Theoretical Consideration for Single Fibre Pull-out Tests
,” Composites Science and Technology
, Elsevier Applied Science
, New York
, 1985
, Vol. 22
, pp. 33
–42
.233.
Chua
, P.
and Piggott
, M.
, “The Glass Fibre-Polymer Interface: II—Work of Fracture and Shear Stresses
,” Composites Science and Technology
, Elsevier Applied Science
, New York
, 1985
, Vol. 22
, pp. 107
–119
.234.
Chua
, P.
and Piggott
, M.
, “The Glass Fibre-Polymer Interface: III—Pressure and Coefficient of Fraction
,” Composites Science and Technology
, Elsevier Applied Science
, New York
, 1985
, Vol. 22
, pp. 185
–196
.235.
Chua
, P.
and Piggott
, M.
, “The Glass Fibre-Polymer Interface: IV—Controlled Shrinkage Polymers
,” Composites Science and Technology
, Elsevier Applied Science
, New York
, 1985
, Vol. 22
, pp. 245
–258
.236.
Chang
, T.
and Jang
, B.
, “The Effects of Fiber Surface Treatments by a Cold Plasma in Carbon Fiber/BMI Composites
,” Mater Res. Soc. Symp. Proc.
, Vol. 170
, 1990
, pp. 321
–326
.237.
Yip
, P.
and Lin
, S.
, “Effect of Surface Oxygen on Adhesion of Carbon Fiber Reinforced Composites
,” Mater Res. Soc. Symp. Proc.
, Vol. 170
, 1990
, pp. 339
–344
.238.
Gaur
, U.
and Davidson
, T.
, “Interfacial Effects of Plasma Treatment on Fiber Pull-out
,” Mater Res. Soc. Symp. Proc.
, Vol. 170
, 1990
, pp. 309
–314
.239.
Jang
, B.
, “Control of Interfacial Adhesion in Continuous Carbon and Kevlar Fiber Reinforced Polymer Composites
,” Compos. Sci. Technol.
0266-3538, Vol. 44
, 1992
, pp. 333
–349
.240.
Harris
, B.
, Morley
, J.
, and Phillips
, D.
, “Fracture Mechanisms in Glass-Reinforced Plastics
,” J. Mater Sci.
0022-2461, Vol. 10
, 1975
, pp. 2050
–2061
.241.
Kirk
, J.
, Munro
, M.
, and Beaumont
, P.
, “The Fracture Energy of Hybrid Carbon and Glass Fibre Composites
,” J. Mater Sci.
0022-2461, Vol. 13
, 1978
, pp. 2197
–2204
.
This content is only available via PDF.
All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ASTM International.
You do not currently have access to this content.