Abstract

Cryogenic treatment is a technique applied to metallic alloys to improve their mechanical properties through stress relief and the formation of microprecipitates. Recently, there have been attempts among musical instrument makers to perform cryogenic treatment on musical instruments. While there are claims that these instruments experienced improved tonal performance due to altered physical and mechanical characteristics after cryogenic treatment, there have been no attempts to examine or qualify these claims. This study is an effort to characterize music wire in acoustic systems before and after cryogenic treatment in terms of changes in material and mechanical properties. Treated strings are found to possess improved mechanical properties. An explanation is proposed for the changes in the material caused by cryogenic treatment.

References

1.
D. N.
Collins
, “
Deep Cryogenic Treatment of Tool Steels: A Review
,”
Heat Treat. Met.
 0305-4829 
2
,
40
-
42
(
1996
).
2.
D.
Yun
,
L.
Xiaoping
, and
X.
Hongshen
, “
Deep Cryogenic Treatment of High-Speed Steels and its Mechanism
,
Heat Treat. Met.
 0305-4829 
3
,
55
-
59
(
1998
).
3.
Bryson
,
William E.
,
Cryogenics
,
Hanser Gardner Publications
,
Cincinnati, Ohio
,
1999
.
4.
D. Mohan
Lal
,
S.
Renganarayanan
, and
A.
Kalanidhi
, “
Cryogenic Treatment to Augment Wear Resistance of Tool and Die Steels
,
Cryogenics
 0011-2275 
41
,
149
-
155
(
2001
).
5.
J. Y.
Huang
,
Y. T.
Zhu
,
X. Z.
Liao
,
I. J.
Beyerlein
,
M. A.
Bourke
, and
T. E.
Mitchell
, “
Microstructure of Cryogenic Treated M2 Tool Steel
,
Mater. Sci. Eng., A
 0921-5093 
339
,
241
-
244
(
2003
).
6.
A.
Molinari
,
M.
Pellizzari
,
S.
Gialanell
,
G.
Straffelini
, and
K. H.
Stisny
, “
Effect of Deep Cryogenic Treatment on the Mechanical Properties of Tool Steels
,
J. Mater. Process. Technol.
 0924-0136 
118
,
350
-
355
(
2001
).
7.
V.
Leskovsek
and
B.
Ule
, “
Influence of Deep Cryogenic Treatment on Microstructure, Mechanical Properties and Dimensional Changes of Vacuum Heat-Treated High-Speed Steel
,”
Heat Treat. Met.
 0305-4829 
29
(
3
),
72
-
76
(
2002
).
8.
A. J.
Vimal
,
A.
Bensely
,
D. M.
Lal
, et al
, “
Residual Stress Analysis of Cryogenically Treated Cutting Tools
,
Cryogenics and Refrigeration—Proceedings of ICCR 2003
,
2003
, pp.
798
-
801
.
9.
A.
Jordine
, “
Increased Life of Carburised Race Car Gears by Cryogenic Treatment
,”
Proc. IMMA Conf. ‘The Heat is On!’
Melbourne, Victoria, Australia
, 24–25 May, 1995, pp.
107
-
111
.
10.
Z.
Wu
,
P.
Shan
,
J.
Lian
, and
S.
Hu
, “
Effect of Deep Cryogenic Treatment on Electrode Life and Microstructure for Spot Welding Hot Dip Galvanized Steel
,
Mater. Des.
 0264-1275 
24
(
8
),
687
-
692
(
2003
).
11.
K. H. W.
Seah
,
M.
Rahman
, and
K. H.
Yong
, “
Proceedings of the Institution of Mechanical Engineers Part C
,”
J. Mech. Eng. Sci.
 0022-2542,
217
, (
1
),
29
-
43
(
2003
).
12.
J.
Indumathi
,
J.
Bijwe
,
A. K.
Ghosh
,
M.
Fahim
, and
N.
Krishnaraj
, “
Wear of Cryo-treated Engineering Polymers and Composites
,
Wear
 0043-1648 
225–229
,
343
-
353
(
1990
).
13.
H.
Zhang
,
Z.
Zhang
, and
C.
Breidt
, “
Comparison of Short Carbon Fibre Surface Treatments on Epoxy Composites: I. Enhancement of the Mechanical Properties
,”
Compos. Sci. Technol.
 0266-3538,
64
,
2021
-
2029
(
2004
).
14.
J. M.
Chen
,
Cryogenic Treatment of Music Wire
, M. Eng. thesis,
Dept. of Mechanical Engineering, National University of Singapore
, Singapore,
2004
.
15.
W. L.
Monical
, “
String
,”
The New Harvard Dictionary of Music
, edited by
D. M.
Randel
,
The Belknap Press of Harvard University Press
,
Cambridge, Massachusetts
,
1986
.
16.
N. H.
Fletcher
and
T. D.
Rossing
,
The Physics of Musical Instruments
,
Springer-Verlag
,
New York Inc.
,
1991
, p. 3.
17.
S.
Kalpakjian
,
Manufacturing Engineering and Technology
3rd Addison-Wesley Publishing Company
,
Reading, MA
,
1995
.
18.
R.
Steiner
, ed., Steel Wire, Chapter on “
Carbon and Low-Alloy Steels
,”
ASM Handbook Volume 01: Properties and Selection: Irons, Steels, and High-Performance Alloys
,
Materials Park, OH
,
ASM International
,
1990
, pp.
284
-
285
.
19.
T. P.
Sweeny
, “
Deep Cryogenics: the Great Debate
,”
Heat Treating
,
18
(
2
),
28
-
32
(
1986
).
20.
S.
Chatterjee
, “
Performance-Characteristics of Cryogenically Treated High-Speed Drills
,”
Int. J. Prod. Res.
 0020-7543 
30
(
4
),
773
-
786
(
1992
).
21.
R. F.
Barron
, “
Cryogenic Treatment of Metals to Improve Wear Resistance
,”
Cryogenics
 0011-2275 
22
(
5
),
409
-
414
(
1982
).
22.
R. F.
Barron
, “
Cryogenics—Do Temperatures Below — 120 Deg F Help
,”
Heat Treating
6
(
6
),
14
-
17
(
1974
).
23.
E. A.
Smol'nikov
and
G. A.
Kossovich
, “
Cold Treatment of Cutting Tools
,”
Metals Science and Heat Treatment
(English translation of a Russian journal),
22
(
10
),
704
-
705
(
1980
).
24.
A. N.
Popandopulo
and
L. T.
Zhukova
, “
Transformations in High Speed Steels During Cold Treatment
,”
Metals Science and Heat Treatment
(English translation of a Russian journal),
22
(
10
),
708
-
710
(
1980
).
25.
F.
Meng
,
K.
Tagashira
,
R.
Azuma
, and
H.
Sohma
, “
Role of Eta-Carbide Precipitations in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment
,”
ISIJ Int.
 0915-1559 
34
(
2
),
205
-
210
(
1994
).
26.
P. L.
Yen
, “
Formation of Fine Eta Carbides in Special Cryogenic and Tempering Process Key to Improved Properties of Alloy Steels
,”
Ind. Heat.
 0019-8374 
1
,
40
-
44
(
1997
).
27.
D.
Bramipour
,
T. A.
Svec
,
K. W.
White
, et al
, “
Wear Resistance of Cryogenically Treated Stainless Steel Files
,”
J. Endod.
 0099-2399 
27
(
3
),
212
-
213
(
2001
).
28.
M. S.
Kumar
,
D. M.
Lal
,
S.
Renganarayanan
, et al
, “
An Experimental Investigation on the Mechanism of Wear Resistance Improvement in Cryotreated Tool Steels
,”
Ind. J. Eng. Mater. Sci.
 0971-4588 
8
(
4
),
198
-
204
(
2001
).
29.
J. Y.
Huang
,
Y. T.
Zhu
,
X. Z.
Liao
,
I. J.
Beyerlein
,
M. A.
Bourke
, and
T. E.
Mitchell
, “
Microstructure of Cryogenic Treated M2 Tool Steel
,”
Mater. Sci. Eng., A
 0921-5093,
339
,
241
-
244
(
2003
).
30.
N. C.
Pickering
, “
Nonlinear Behavior in Overwound Violin Strings
,”
Journal of the Catgut Acoustical Society
1
(
3
) series II,
46
-
50
(
1989
).
31.
N. H.
Fletcher
and
T. D.
Rossing
,
The Physics of Musical Instruments
,
Springer-Verlag
,
New York
,
1991
, pp. 212.
32.
D. E.
Hall
,
Musical Acoustics
,
Brooks/Cole Publishing Company
,
Pacific Grove, Calif.
,
1991
, pp.
170
-
172
.
33.
M.
Goodway
, “
Metals in Music
,”
Mater. Charact.
 1044-5803 
29
,
177
-
184
(
1992
).
34.
N. H.
Fletcher
, “
Inharmonicity, Nonlinearity, and Music
,”
The Physicist
 1036-3831 (Australia)
37
(
5
),
171
-
175
(
2000
).
35.
W.
Reitz
and
J.
Pendray
, “
Cryoprocessing of Materials: A Review of Current Status
,”
Mater. Manuf. Processes
 1042-6914 
16
(
6
),
829
-
840
(
2001
).
36.
N. H.
Fletcher
and
T. D.
Rossing
,
The Physics of Musical Instruments
,
Springer-Verlag
,
New York
,
1991
, pp.
50
-
53
.
37.
V. R.
Baraz
,
A. A.
Sokolov
, and
A. V.
Belov
, “
Nonmetallic Inclusions in Steel and Acoustic Properties of Piano Wire
,”
Metallovedenie i Termicheskaya Obrabotkamatallov (Metal Science and Heat Treatment)
8
,
33
-
34
(
1995
).
38.
D. R.
Askeland
, “
The Science and Engineering of Materials
,” Chap. 11
Dispersion Strengthening by Phase Transformation and Heat Treatment
,”
Chapman and Hall
,
London
.
39.
D. R.
Askeland
, “
Imperfections in the Atomic Arrangement
,” Chap. 4,
Dispersion Strengthening by Phase Transformation and Heat Treatment
,”
Chapman and Hall
,
London
.
40.
Heat Treating, Cold Treating and Cryogenic Treatment of Steel
,
ASM Handbook
, vol.
4
, pp.
203
-
207
.
This content is only available via PDF.
You do not currently have access to this content.