Abstract

Radiation embrittlement kinetics of Cr–Mo and Cr–Ni–Mo steels, used for manufacturing VVER-440 and VVER-1000 RPV steels, respectively, are under consideration. Radiation embrittlement of VVER-440 and VVER-1000 RPV steels exposed to irradiation for 17–22 years is analyzed. Extremely high levels of thermal aging of VVER-1000 RPV steels at 320°C is pointed out. The neutron flux effect problem and the problem of accelerated radiation embrittlement of welds with high nickel contents are emphasized. The effect of phosphorus, copper, silicon, manganese, and nickel contents on radiation embrittlement of VVER-440 and VVER-1000 RPV steels is studied using the Russian surveillance database and representative results of research programs. The trend curves for VVER-440 and VVER-1000 RPV steels are proposed. The mechanisms of radiation embrittlement of Cr–Ni–Mo and Cr–Mo RPV steels are supposed.

References

1.
Standards of Calculation for Strength of Nuclear Power Plant Equipment and Pipelines
,”
PNAE G-7-002-86. M.: ENERGOATOMIZDAT
,
1989
.
2.
Nikolaev
,
Y. A.
,
Nikolaeva
,
A. V.
, and
Shtrombakh
,
Y. I.
, “
Radiation Embrittlement of Low-alloy Steels
,”
Int. J. Pressure Vessels Piping
 0308-0161 https://doi.org/10.1016/S0308-0161(02)00065-0, Vol.
79
, No. 8–10,
2002
, pp.
619
636
.
3.
Shtrombakh
,
Ya. I.
,
Nikolaev
,
Yu. A.
, and
Platonov
,
P. A.
, “
The Radiation Design Operation Period of Reactor Pressure Vessel Steels for Operating VVER Units
,”
At. Energ.
 0004-7163, Vol.
98
, No.
6
,
2005
, pp.
460
472
.
4.
Zabusov
,
O. O.
,
Krasikov
,
E. A.
,
Kozodaev
,
M. A.
,
Suvorov
,
A. L.
,
Pareige
,
P.
, and
Radiguet
,
R.
, “
Redistribution of Impurity and Alloying Elements in VVER-440 Reactor Pressure Vessel Steel Under Action of Operational Factors
,”
Questions of a Nuclear Science and Techniques. A Series: Physics of Radiating Damages and Radiation Material Science
, No. 3,
2003
, pp.
66
72
.
5.
Kuleshova
,
E. A.
,
Gurovich
,
B. A.
,
Shtrombakh
,
Ya. I.
,
Nikolaev
,
Yu. A.
, and
Pechenkin
,
V. A.
, “
Microstructural Behavior of VVER-440 Reactor Pressure Vessel Steels Under Irradiation to Neutron Fluences Beyond the Design Operation Period
,”
J. Nucl. Mater.
 0022-3115 https://doi.org/10.1016/j.jnucmat.2005.03.011, Vol.
342
,
2005
, pp.
77
89
.
6.
U. S. NRC Regulatory Guide 1.99
, Rev. 1,
1977
.
7.
Standard Guide for Prediction Neutron Radiation Damage to Reactor Vessel Materials, E706 (IIF), ASTM E 900–98.
8.
Nikolaeva
,
A. V.
,
Nikolaev
,
Yu. A.
, and
Kevorkyan
,
Yu. R.
, “
Experimental—Statistic Analysis of Radiation Embrittlement of VVER-440 Reactor Pressure Vessel Steels
,”
At. Energ.
 0004-7163, Vol.
90
, No.
4
,
2001
, pp.
260
267
.
9.
Nikolaeva
,
A. V.
,
Nikolaev
,
Yu. A.
, and
Kevorkyan
,
Yu. R.
, “
Radiation Embrittlement of VVER-1000 Reactor Pressure Vessel Steels
,”
At. Energ.
 0004-7163, Vol.
90
, No.
5
,
2001
, pp.
359
366
.
10.
Nikolaev
,
Yu. A.
,
Nikolaeva
,
A. V.
,
Kryukov
,
A. M.
,
Levit
,
V. I.
, and
Korolev
,
Yu. N.
, “
Radiation Embrittlement and Thermal Annealing Behavior of Cr–Ni–Mo Reactor Pressure Vessel Materials
,”
J. Nucl. Mater.
 0022-3115 https://doi.org/10.1016/0022-3115(95)00097-6, Vol.
226
,
1995
, pp.
144
155
.
11.
Nikolaeva
,
A. V.
, and
Nikolaev
,
Yu. A.
, “
Mechanism of the Drop in the Dependence of Yield Stress on Neutron Irradiation Dose for Low-Alloy Steel
,”
Mater. Sci. Eng., A
 0921-5093, Vol.
A234–236
,
1997
, pp.
915
917
.
12.
Williams
,
T. J.
,
Ellis
,
D.
,
English
,
C. A.
, and
Hyde
,
J.
, “
A Model of Irradiation Damage in High Nickel Submerged Arc Welds
,”
Int. J. Pressure Vessels Piping
 0308-0161 https://doi.org/10.1016/S0308-0161(02)00068-6, Vol.
79
,
2002
, pp.
649
660
.
This content is only available via PDF.
You do not currently have access to this content.