Abstract
It is now well acknowledged that, after a prototypical loss of coolant accident (LOCA) transient, the resultant mechanical properties of fuel cladding tubes depend strongly on the oxygen content of the residual prior-β layer, as this phase is the only metallic part of the high-temperature oxidized cladding that may show some residual ductility. The aim of this study is to obtain relevant information on the evolution of the mechanical properties, on the one hand, of the prior-β structure as a function of the oxygen content, assuming that there is a critical oxygen content that leads to a ductile-to-brittle failure mode transition at low testing temperatures (20–135°C); and on the other hand, of the α(O) structure as a function of the oxygen content. Sheets of Zircaloy-4, 1 to 3 mm thick, and M5®
M5® is a registered trademark of AREVA-NP.