Abstract

Eurofer’97 is the structural reference material that will be tested in the ITER modules. Its metallurgical properties have been well characterized during the last years. However, more investigations related to the fracture toughness of this material are needed to assess its integrity because this property is one of the most important to design structural components. In the case of structural materials for fusion reactors, the small specimen test technology is being actively developed to investigate the fracture toughness among other mechanical properties. The use of small specimens is due to the small available irradiation volume of the International Fusion Materials Irradiation Facility (IFMIF) and also due to the high fluence expected in the fusion reactor. The aim of this paper is to determine the fracture toughness of the Eurofer’97 steel by testing small specimens of different geometry in the ductile-to-brittle transition region with the application of the Master Curve methodology. The tests and data analysis have been performed following the Master Curve approach included in the ASTM Standard E1921-05, “Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range.” Specimen size effects and comparison of the fracture toughness results with available data in the literature are also discussed.

References

1.
Spatig
,
P.
,
Campitelli
,
E. N.
,
Bonade
,
R.
, and
Baluc
,
N.
, “
Assessment of Plastic Flow and Fracture Properties with Small Specimen Test Techniques for IFMIF-designed Specimens
,”
Nucl. Fusion
 0029-5515 https://doi.org/10.1088/0029-5515/45/7/011, Vol.
45
, No.
7
,
2005
, pp.
635
641
.
2.
Wallin
,
K.
, “
The Scatter in KIC-Results
,”
Eng. Fract. Mech.
 0013-7944 https://doi.org/10.1016/0013-7944(84)90153-X, Vol.
19
, No.
6
,
1984
, pp.
1085
1093
.
3.
ASTM E 1921-05, “
Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range
,”
Annual Book of Standards
, Vol.
3
,
ASTM International
,
West Conshohocken, PA
,
2005
.
4.
Guidelines for Application of the Master Curve Approach to Reactor Pressure Vessel Integrity in Nuclear Power Plants
,” IAEA Technical Reports Series No. 429,
2005
.
5.
Odette
,
G. R.
,
Yamamoto
,
T.
,
Kishimoto
,
H.
,
Sokolov
,
M.
,
Spatig
,
P.
,
Yang
,
W. J.
,
Rensman
,
J. W.
, and
Lucas
,
G. E.
, “
A Master Curve Analysis of F82H Using Statistical and Constraint Loss Size Adjustments of Small Specimen Data
,”
J. Nucl. Mater.
 0022-3115, Vol.
329–333
,
2004
, pp.
1243
1247
.
6.
Lucon
,
E.
,
Chaouadi
,
R.
, and
Decreton
,
M.
, “
Mechanical Properties of the European Reference RAFM Steel (EUROFER97) Before and After Irradiation at 300 Degrees C
,”
J. Nucl. Mater.
 0022-3115, Vol.
329–333
,
2004
, pp.
1078
1082
.
7.
Rensman
,
J.
,
van Hoepen
,
J.
,
Bakker
,
J. B. M.
,
den Boef
,
R.
,
van den Broek
,
F. P.
, and
van Essen
,
E. D. L.
, “
Tensile Properties and Transition Behaviour of RAFM Steel Plate and Welds Irradiated up to 10 dpa at 300 Degrees C
,”
J. Nucl. Mater.
 0022-3115, Vol.
307
,
2002
, pp.
245
249
.
8.
Sokolov
,
M. A.
,
Klueh
,
R. L.
,
Odette
,
G. R.
,
Shiba
,
K.
, and
Tanigawa
,
H.
, “
Fracture Toughness Characterization of Irradiated F82H in the Transition Region
,”
Effects of Radiation on Material: 21st International Symposium
, ASTM STP 1447, pp.
408
416
,
ASTM International
,
West Conshohocken, PA
,
2004
.
9.
Wallin
,
K.
,
Laukkanen
,
A.
, and
Tähtinen
,
S.
, “
Examination on fracture resistance of F82H steel and performance of small specimens in transition and ductile regimes
,”
Small Specimen Test Techniques: 4th Volume
, ASTM STP 1418,
ASTM International
,
West Conshohocken, PA
, pp.
33
47
,
2002
.
10.
Fernandez
,
P.
,
Lancha
,
A. M.
,
Lapena
,
J.
,
Serrano
,
M.
, and
Hernandez-Mayoral
,
M.
, “
Metallurgical Properties of Reduced Activation Martensitic Steel Eurofer’97 in the As-received Condition and After Thermal Ageing
,”
J. Nucl. Mater.
 0022-3115, Vol.
307
,
2002
, pp.
495
499
.
11.
Lucon
,
E.
, “
Characterization of the Mechanical Properties of EUROFER in the Unirradiated and Irradiated Condition
,” BLG-945,
06
2003
.
12.
Rensman
,
J.
, “
NRG Irradiation Testing: Report on 300°C and 60°C Irradiated RAFM Steels
,” NRG Report 20023/05.68497/P,
2005
.
13.
Rieth
,
M.
,
Schirra
,
M.
,
FalkensteinGraf
,
P.
,
Heger
,
S.
,
Kempe
,
H.
,
Lindau
,
R.
, and
Zimmermann
,
H.
, “
EUROFER 97-Tensile, Charpy, Creep and Structural Tests
,” FZK Report FZKA 6911,
2003
.
14.
Wallin
,
K.
,
Planman
,
T.
,
Valo
,
M.
, and
Rintamaa
,
R.
, “
Applicability of Miniature Size Bend Specimens to Determine the Master Curve Reference Temperature T0
,”
Eng. Fract. Mech.
 0013-7944 https://doi.org/10.1016/S0013-7944(01)00020-0, Vol.
68
, No.
11
,
2001
, pp.
1265
1296
.
15.
Kasada
,
R.
,
Ono
,
H.
, and
Kimura
,
A.
, “
Small Specimen Test Technique for Evaluating Fracture Toughness of Blanket Structural Materials
,”
Fusion Eng. Des.
 0920-3796, Vol.
81
, Nos.
8–14
,
2006
, pp.
981
986
.
16.
Nanstad
,
R. K.
, and
Sokolov
,
M. A.
, “
Fracture Toughness Vis-à-vis the Master Curve for Some Advanced Reactor Pressure Vessel and Structural Steels
,”
European Congress on Advanced Materials and Processes
, EUROMAT 2005,
Prague, Czech Republic
.
This content is only available via PDF.
You do not currently have access to this content.