Abstract

Cumulative fatigue under axial and torsional loading conditions can include both load-order (high/low and low/high) as well as load-type sequence (axial/torsional and torsional/axial) effects. Previously reported experimental studies on a cobalt-base superalloy, Haynes 188 at 538°C, addressed these effects. These studies characterized the cumulative axial and torsional fatigue behavior under high amplitude followed by low amplitude (Kalluri, S. and Bonacuse, P. J., “Cumulative Axial and Torsional Fatigue: An Investigation of Load-Type Sequence Effects,” in Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387, S. Kalluri, and P. J. Bonacuse, Eds., American Society for Testing and Materials, West Conshohocken, PA, 2000, pp. 281–301) and low amplitude followed by high amplitude (Bonacuse, P. and Kalluri, S. “Sequenced Axial and Torsional Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading,” Biaxial/Multiaxial Fatigue and Fracture, ESIS Publication 31, A. Carpinteri, M. De Freitas, and A. Spagnoli, Eds., Elsevier, New York, 2003, pp. 165–182) conditions. In both studies, experiments with the following four load-type sequences were performed: (a) axial/axial, (b) torsional/torsional, (c) axial/torsional, and (d) torsional/axial. In this paper, the cumulative axial and torsional fatigue data generated in the two previous studies are combined to generate a comprehensive cumulative fatigue database on both the load-order and load-type sequence effects. This comprehensive database is used to examine applicability of the Palmgren–Langer–Miner linear damage rule and a nonlinear damage curve approach for Haynes 188 subjected to the load-order and load-type sequencing described above. Summations of life fractions from the experiments are compared to the predictions from both the linear and nonlinear cumulative fatigue damage approaches. The significance of load-order versus load-type sequence effects for axial and torsional loading conditions is discussed. Possible reasons for the observed differences between the computed and observed summations of cycle fractions are rationalized in terms of the observed evolutions of cyclic axial and shear stress ranges in the cumulative fatigue tests.

References

1.
Palmgren
,
A.
Die Lebensdauer von Kugellagern
,”
Z. Ver. Dtsch. Ing.
 0341-7255, Vol.
68
,
1924
, pp.
339
341
.
2.
Langer
,
B. F.
, “
Fatigue Failure from Stress Cycles of Varying Amplitude
,”
J. Appl. Mech.
 0021-8936, Vol.
4
,
1937
, pp.
A160
A162
.
3.
Miner
,
M. A.
, “
Cumulative Damage in Fatigue
,”
J. Appl. Mech.
 0021-8936, Vol.
12
,
1945
, pp.
A159
A164
.
4.
Wood
,
W. A.
and
Reimann
,
W. H.
, “
Observations on Fatigue Damage Produced by Combinations of Amplitudes in Copper and Brass
,”
J. Inst. Met.
 0020-2975, Vol.
94
,
1966
, pp.
66
70
.
5.
Manson
,
S. S.
,
Nachtigall
,
A. J.
,
Ensign
,
C. R.
, and
Freche
,
J. C.
, “
Further Investigation of a Relation for Cumulative Fatigue Damage in Bending
,”
J. Eng. Ind.
 0022-0817, Vol.
87
,
1965
, pp.
25
35
.
6.
Manson
,
S. S.
and
Halford
,
G. R.
, “
Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage
,”
Int. J. Fract.
 0376-9429, Vol.
17
,
1981
, pp.
169
192
. https://doi.org/10.1007/BF00053519
7.
Bui-Quoc
,
T.
, “
Cumulative Damage with Interaction Effect due to Fatigue Under Torsion Loading
,”
Exp. Mech.
 0014-4851, Vol.
22
,
1982
, pp.
180
187
. https://doi.org/10.1007/BF02327403
8.
Miller
,
K. J.
and
Ibrahim
,
M. F. E.
, “
Damage Accumulation During Initiation and Short Crack Growth Regimes
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
4
,
1981
, pp.
263
277
. https://doi.org/10.1111/j.1460-2695.1981.tb01124.x
9.
Manson
,
S. S.
and
Halford
,
G. R.
, “
Re-examination of Cumulative Fatigue Damage Analysis–An Engineering Perspective
,”
Eng. Fract. Mech.
 0013-7944, Vol.
25
,
1986
, pp.
539
571
. https://doi.org/10.1016/0013-7944(86)90022-6
10.
Golos
,
K.
and
Ellyin
,
F.
, “
Generalization of Cumulative Damage Criterion to Multilevel Cyclic Loading
,”
Theor. Appl. Fract. Mech.
 0167-8442, Vol.
7
,
1987
, pp.
169
176
. https://doi.org/10.1016/0167-8442(87)90032-2
11.
Chaboche
,
J. L.
and
Lesne
,
P. M.
, “
A Non-Linear Continuous Fatigue Damage Model
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
11
,
1988
, pp.
1
17
. https://doi.org/10.1111/j.1460-2695.1988.tb01216.x
12.
McGaw
,
M. A.
,
Kalluri
,
S.
,
Moore
,
D.
, and
Heine
,
J.
, “
The Cumulative Fatigue Damage Behavior of Mar-M 247 in Air and High Pressure Hydrogen
,” in
Advances in Fatigue Lifetime Predictive Techniques: Second Volume, ASTM STP 1211
,
M. R.
Mitchell
and
R. W.
Landgraf
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1993
, pp.
117
131
. https://doi.org/10.1520/STP15081S
13.
Miller
,
K. J.
, and
Brown
,
M. W.
Multiaxial Fatigue: A Brief Review
,”
Fracture 84, Proceedings of the Sixth International Conference on Fracture
,
Pergamon Press
,
New Delhi, India
,
1984
, pp.
31
56
.
14.
Hua
,
C. T.
, and
Socie
,
D. F.
, “
Fatigue Damage in 1045 Steel Under Variable Amplitude Biaxial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
8
,
1985
, pp.
101
114
. https://doi.org/10.1111/j.1460-2695.1985.tb01197.x
15.
Miller
,
K. J.
, “
Metal Fatigue—Past, Current, and Future
,”
Proc. Inst. Mech. Eng.
 0020-3483, Vol.
205
,
1991
, pp.
1
14
.
16.
Robillard
,
M.
and
Cailletaud
,
G.
, “
Directionally Defined Damage in Multiaxial Low-Cycle Fatigue: Experimental Evidence and Tentative Modelling
,”
Fatigue Under Biaxial and Multiaxial Loading, ESIS10
,
K.
Kussmaul
,
D.
McDiarmid
, and
D.
Socie
, Eds.,
Mechanical Engineering Publications
,
London
,
1991
, pp.
103
130
.
17.
Weiss
,
J.
and
Pineau
,
A.
, “
Continuous and Sequential Multiaxial Low-Cycle Fatigue Damage in 316 Stainless Steel
,” in
Advances in Multiaxial Fatigue, ASTM STP 1191
,
D. L.
McDowell
and
R.
Ellis
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1993
, pp.
183
203
. https://doi.org/10.1520/STP24802S
18.
Weiss
,
J.
and
Pineau
,
A.
, “
Fatigue and Creep-Fatigue Damage of Austenitic Stainless Steels under Multiaxial Loading
,”
Metall. Trans. A
 0360-2133, Vol.
24
,
1993
, pp.
2247
2261
. https://doi.org/10.1007/BF02648599
19.
Lin
,
H.
,
Nayeb-Hashemi
,
H.
, and
Berg
,
C. A.
, “
Cumulative Damage Behavior of Anisotropic Al-6061-T6 as a Function of Axial-Torsional Loading Mode Sequence
,”
ASME J. Eng. Mater. Technol.
 0094-4289, Vol.
116
,
1994
, pp.
27
34
. https://doi.org/10.1115/1.2904252
20.
Hua
,
G.
and
Fernando
,
U. S.
, “
Effect of Non-Proportional Overloading on Fatigue Life
,”
Fatigue Fract. Eng. Mater. Struct.
 8756-758X, Vol.
19
,
1996
, pp.
1197
1206
. https://doi.org/10.1111/j.1460-2695.1996.tb00943.x
21.
Morel
,
F.
and
Bastard
,
M.
, “
A Multiaxial Life Prediction Method Applied to a Sequence of Non Similar Loading in High Cycle Fatigue
,”
Int. J. Fatigue
 0142-1123, Vol.
25
,
2003
, pp.
1007
1012
. https://doi.org/10.1016/S0142-1123(03)00113-0
22.
Harada
,
S.
and
Endo
,
T.
, “
On the Validity of Miner’s Rule under Sequential Loading of Rotating Bending and Cyclic Torsion
,” in
Fatigue Under Biaxial and Multiaxial Loading, ESIS10
,
K.
Kussmaul
,
D.
McDiarmid
, and
D.
Socie
, Eds.,
Mechanical Engineering Publications
,
London
,
1991
, pp.
161
178
.
23.
Kalluri
,
S.
and
Bonacuse
,
P. J.
, “
Cumulative Axial and Torsional Fatigue: An Investigation of Load-Type Sequence Effects
,” in
Multiaxial Fatigue and Deformation: Testing and Prediction, ASTM STP 1387
,
S.
Kalluri
, and
P. J.
Bonacuse
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
2000
, pp.
281
301
. https://doi.org/10.1520/STP13510S
24.
Bonacuse
,
P.
and
Kalluri
,
S.
Sequenced Axial and Torsional Cumulative Fatigue: Low Amplitude Followed by High Amplitude Loading
,”
Biaxial/Multiaxial Fatigue and Fracture, ESIS Publication 31
,
A.
Carpinteri
,
M.
De Freitas
, and
A.
Spagnoli
, Eds.,
Elsevier
,
New York
,
2003
, pp.
165
182
.
25.
Bonacuse
,
P. J.
, and
Kalluri
,
S.
, “
Axial-Torsional Fatigue: A Study of Tubular Specimen Thickness Effects
,”
J. Test. Eval.
 0090-3973, Vol.
21
(
3
),
1993
, pp.
160
167
. https://doi.org/10.1520/JTE11765J
26.
Ellis
,
J. R.
and
Bartolotta
,
P. A.
, “
Adjustable Work Coil Fixture Facilitating the Use of Induction Heating in Mechanical Testing
,” in
Multiaxial Fatigue and Deformation Testing Techniques, ASTM STP 1280
,
S.
Kalluri
, and
P. J.
Bonacuse
, Eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
,
1997
, pp.
43
62
. https://doi.org/10.1520/STP16212S
This content is only available via PDF.
You do not currently have access to this content.