Abstract

Algae, a third generation biofuel feedstock, present one of the most attractive renewable fuel opportunities. Algae’s potential arises from its high biomass yield, ability to grow in a range of environments and its effectiveness as a bioremediation agent for CO2 sequestration and waste water treatment. Studies suggest that algae are the only biofeedstock that has the potential to completely replace world’s fossil transportation fuels. As a result, interest in algae as a source of fuel is high, but the fact remains that no one has yet shown that they can economically and reliably transform algae into fuel that significantly reduces our dependence on petroleum-based fuels. While a number of hurdles contribute to this scenario, based on our evaluation of this industry and processes, we have determined the three key hurdles to be: (a) Sub-optimal choice of algae strains/species; (b) cost of photobioreactor (specialized equipment in which algae are cultivated); and (c) cost of harvesting algae from the growth medium. In this review we identify various research efforts attempted to find solutions for the above three problems, evaluate each effort, and present our inferences on the efforts with the highest potential. We believe further improvements in these research efforts could make algae fuels commercially viable.

References

1.
Huang
,
Z.
,
Poulter
,
C. D.
,
Wolf
,
F. R.
,
Somers
,
T. C.
, and
White
,
J. D.
, “
Braunicene, a Novel Cyclic C32 Isoprenoid from Botryococcus Braunii
,”
J. Am. Chem. Soc.
 0002-7863, Vol.
110
,
1988
, pp.
3959
3964
. https://doi.org/10.1021/ja00220a038
2.
Chiang
,
I. Z.
,
Huang
,
W. Y.
, and
Wu
,
J. T.
, “
Allelochemicals of Botryococcus Braunii (Chlorophyceae)
,”
J. Phycol.
 0022-3646, Vol.
40
,
2004
, pp.
474
480
. https://doi.org/10.1111/j.1529-8817.2004.03096.x
3.
Huang
,
Z.
,
Poulter
,
C. D.
,
Wolf
,
F. R.
,
Somers
,
T. C.
,
White
,
J. D.
, and
Ikawa
,
M.
, “
Algal Polyunsaturated Fatty Acids and Effects on Plankton Ecology and Other Organisms
,”
UNH Center for Freshwater Biology Research
, Vol.
6
,
2004
, pp.
17
44
.
4.
Metzger
,
P.
,
Largeau
,
C.
, and
Casadevall
,
E.
, “
Lipid and Macromolecular Lipids of the Hydrocarbon-Rich Microalga Botryococcus Braunii. Chemical Structure and Biosynthesis-Geochemical and Biotechnological Importance
,”
Prog. Chem. Org. Nat. Prod.
, Vol.
57
,
1991
, pp.
1
63
.
5.
Qin
,
J.
, “
Bio-Hydrocarbons from Algae: Impacts of Temperature, Light and Salinity on Algae Growth
,” Report to Rural Industries Research and Development Corporation, Australia,
2005
.
6.
Fang
,
J. Y.
,
Chiu
,
H. C.
,
Wu
,
J. T.
,
Chiang
,
Y. R.
, and
Hsu
,
S. H.
, “
Fatty Acids in Botryococcus Braunii Accelerate Topical Delivery of Flurbiprofen into and Across Skin
,”
Int. J. Pharm.
 0378-5173, Vol.
276
,
2004
, pp.
163
173
. https://doi.org/10.1016/j.ijpharm.2004.02.026
7.
Dayananda
,
C.
,
Sarada
,
R.
,
Srinivas
,
P.
,
Shamala
,
T. R.
, and
Ravishankar
,
G. A.
, “
Presence of Methyl Branched Fatty Acids and Saturated Hydrocarbons in Botryococcene Producing Strain of Botryococcus Braunii
,”
Acta Physiol. Plant.
, Vol.
28
,
2006
, pp.
251
256
. https://doi.org/10.1007/BF02706538
8.
Hillen
,
L. W.
,
Pollard
,
G.
,
Wake
,
L. V.
, and
White
,
N.
, “
Hydrocracking of the Oils of Botryococcus Braunii to Transport Fuels
,”
Biotechnol. Bioeng.
 0006-3592, Vol.
24
,
1982
, pp.
193
205
. https://doi.org/10.1002/bit.260240116
9.
Li
,
Y.
,
Horsman
,
M.
,
Wang
,
B.
,
Wu
,
N.
, and
Lan
,
C. Q.
, “
Effects of Nitrogen Sources on Cell Growth and Lipid Accumulation of Green Alga Neochloris Oleoabundans
,”
Appl. Microbiol. Biotechnol.
 0175-7598, Vol.
81
,
2008
, pp.
629
636
. https://doi.org/10.1007/s00253-008-1681-1
10.
Xu
,
H.
,
Miao
,
X. L.
, and
Wu
,
Q.
, “
High Quality Biodiesel Production from a Microalga Chlorella Protothecoides by Heterotrophic Growth in Fermenters
,”
J. Biotechnol.
 0168-1656, Vol.
126
,
2006
, pp.
499
507
. https://doi.org/10.1016/j.jbiotec.2006.05.002
11.
Demirbas
,
A.
, “
Production of Biodiesel from Algae Oils
,”
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
, Vol.
31
, No.
2
,
2009
, pp.
163
168
. https://doi.org/10.1080/15567030701521775
12.
Illman
,
A. M.
,
Scragg
,
A. H.
, and
Shales
,
S. W.
, “
Increase in Chlorella strains calorific values when grown in low nitrogen medium
,”
Enzyme Microb. Technol.
 0141-0229, Vol.
27
, No.
8
,
2000
, pp.
631
635
. https://doi.org/10.1016/S0141-0229(00)00266-0
13.
Li
,
X.
,
Xu
,
H.
, and
Wu
,
Q.
, “
Large-Scale Biodiesel Production from Microalga Chlorella Protothecoides Through Heterotrophic Cultivation in Bioreactors
,”
Biotechnol. Bioeng.
 0006-3592, Vol.
98
,
2007
, pp.
764
771
. https://doi.org/10.1002/bit.21489
14.
Gouveia
,
L.
and
Oliveira
,
A. C.
, “
Microalgae as a Raw Material for Biofuels Production
,”
J. Ind. Microbiol. Biotechnol.
 1367-5435, Vol.
36
,
2009
, pp.
269
274
. https://doi.org/10.1007/s10295-008-0495-6
15.
Mandal
,
S.
and
Mallick
,
N.
, “
Microalga Scenedesmus Obliquus as a Potential Source for Biodiesel Production
,”
Appl. Microbiol. Biotechnol.
 0175-7598, Vol.
84
, No.
2
,
2009
, pp.
281
-
291
. https://doi.org/10.1007/s00253-009-1935-6
16.
Borowitzka
,
M. A.
, “
Commercial Production of Microalgae: Ponds, Tanks, Tubes and Fermenters
,”
J. Biotechnol.
 0168-1656, Vol.
70
,
1999
, pp.
313
321
. https://doi.org/10.1016/S0168-1656(99)00083-8
17.
Muller-Feuga
,
A.
,
Le Guédes
,
R.
,
Hervé
,
A.
, and
Durand
,
P.
, “
Comparison of Artificial Light Photobioreactors and Other Production Systems Using Porphyridium Cruentum
,”
J. Appl. Phycol.
 0921-8971, Vol.
10
,
1998
, pp.
83
90
. https://doi.org/10.1023/A:1008046814640
18.
Yogev
, et al
, “
Bioreactor and system for improved productivity of photosynthetic algae
,” Patent No. 5958761, Sept.
1999
.
19.
Tredici
,
M. R.
,
Zittelli
,
G. C.
, and
Benemann
,
J. R.
, “
A Tubular Integral Gas Exchange Photobioreactor for Biological Hydrogen Production
,”
Biohydrogen
,
Plenum Press
,
London
, Vol.
8
,
1998
, pp.
391
401
.
20.
Acién Fernández
,
F. G.
,
Fernández Sevilla
,
J. M.
,
Sánchez Pérez
,
J. A.
,
Molina Grima
,
E.
, and
Chisti
,
Y.
, “
Airlift-Driven External-Loop Tubular Photobioreactors for Outdoor Production of Microalgae: Assessment of Design and Performance
,”
Chem. Eng. Sci.
 0009-2509, Vol.
56
,
2001
, pp.
2721
2732
. https://doi.org/10.1016/S0009-2509(00)00521-2
21.
Molina
,
G. E.
,
Belarbi
,
E. H.
,
Acién Fernández
,
F. G.
,
Medina
,
R. A.
, and
Chisti
,
Y.
, “
Recovery of Microalgal Biomass and Metabolites: Process Options and Economics
,”
Biotechnol. Adv.
 0734-9750, Vol.
20
,
2003
, pp.
491
515
. https://doi.org/10.1016/S0734-9750(02)00050-2
22.
Tenny
,
M. W.
,
Echelberger
,
W. F.
, Jr.
,
Schuessler
,
R. G.
, and
Pavoni
,
J. L.
, “
Algal Flocculation with Synthetic Organic Polyelectrolytes
,”
Appl. Microbiol.
 0003-6919, Vol.
18
,
1969
, pp.
965
971
.
23.
Mohn
,
H.
, “
Experiences and Strategies in the Recovery of Biomass from Mass Cultures of Microalgae: From Algae Biomass
,”
Algae Biomass
,
Elsevier/North-Holland Biomedical Press
,
Amsterdam, The Netherlands
,
1980
, pp.
547
571
.
24.
Golueke
,
C. G.
, and
Oswald
,
W. J.
, “
Harvesting and processing sewage grown algae
,”
J. Water Pollut. Control Fed.
 0043-1303, Vol.
37
, No.
4
,
1965
, pp.
471
498
.
25.
Koopman
,
B. L.
,
Thomson
,
R.
,
Yacksian
,
R.
,
Benemann
,
J. R.
, and
Oswald
,
W. J.
, “
Investigation of the pond isolation process for miroalgae separation from woodland's pond effluents
,” Report to the Univ. of Calif., Berkeley,
1978
, SERL Report No. 78–5.
26.
Koopman
,
B. L.
,
Benemann
,
J. R.
, and
Oswald
,
W. J.
, “
Pond isolation and phase isolation for control of suspended solids concentration in sewage oxidation pond effluents
,” in
Algal Biomass
,
G.
Shelef
and
C.
Soeder
, Eds.,
Elsevier
,
New York
,
1980
, pp.
135
162
.
27.
McGarry
,
M. G.
and
Tongkasame
,
C.
, “
Water Reclamation and Algae Harvesting
,”
J. Water Pollut. Control Fed.
 0043-1303, Vol.
43
,
1971
, pp.
824
835
.
28.
Svarovsky
,
L.
, “
Advances in Solid-Liquid Separation II Sedimentation, Centrifugation and Flotation
,”
Chemical Engineering
,
Butterworth
,
London
,
1979
, pp.
43
105
.
29.
McCabe
,
W. L.
,
Smith
,
J. C.
, and
Harriott
,
P.
,
Unit Operations of Chemical Engineering
, 3rd Ed.,
McGraw-Hill
,
New York
,
1975
, p. 256.
30.
Metcalf and Eddy, Inc.
Waste Water Engineering: Collection, Treatment and Disposal
, 3rd Ed.,
McGraw-Hill
,
New York
,
1972
, pp.
497
498
.
31.
Koopman
,
B.
and
Lincoln
,
E. P.
, “
Autoflotation Harvesting of Algae from High Rate Pond Effluents
,”
Agric. Wastes
 0141-4607, Vol.
5
,
1983
, pp.
231
46
. https://doi.org/10.1016/0141-4607(83)90038-0
32.
Rubio
,
J.
,
2003
, “
Unconventional flocculation and flotation
,”
Fundamentals to Applications, Proceedings from Strategic Conference and Workshop
, Hawaii, 2002, pp.
17
32
.
33.
Rubio
,
J.
,
Souza
,
M. L.
,
Smith
,
R. W.
, “
Overview of flotation as a wastewater treatment technique
,”
Minerals Engineering
, Vol.
15
,
2002
, pp.
139
155
. https://doi.org/10.1016/S0892-6875(01)00216-3
34.
Parekh
,
B. K.
and
Miller
,
J. D.
, Eds.
Advances in Flotation Technology
,
Society for Mining, Metallurgy and Exploration
,
Littleton, CO
,
1999
, pp.
345
352
.
35.
Becker
,
E.W.
,
Micro Algae: Biotechnology and Microbiology
,
Cambridge University Press
,
Cambridge, UK
,
1994
, p. 163.
36.
Brown
,
L. M.
and
Sprague
,
S.
, Eds., “
Aquatic Species Project Report
,” Report No. FY, NREL/MP-232-4174, National Renewable Energy Laboratory, Golden, CO,
1990
.
37.
Energy Information Administration
, “
Annual Energy Outlook 1996 with Projections to 2015
,” Report No. DOE/EIA-0383 (96), U.S. Department of Energy, Washington, DC,
1996
.
38.
McGarry
,
M. G.
, “
Algal Flocculation with Aluminum Sulfate and Polyelectrolytes
,”
J. Water Pollut. Control Fed.
 0043-1303, Vol.
42
,
1970
, pp.
191
201
.
39.
Oh
,
K. K.
,
Kim
,
Y. S.
,
Yoon
,
H. H.
, and
Tae
,
B. S.
, “
Pretreatment of lignocellulosic biomass using combination of ammonia recycled percolation and dilute-acid process
,”
J. Ind. Eng. Chem. (Seoul, Repub. Korea)
 1226-086X, Vol.
8
,
2002
, pp.
64
70
.
40.
Rubio
,
J.
,
Carissimi
,
E.
, and
Rosa
,
J. J.
, “
Flotation in Water and Wastewater Treatment and Reuse: Recent Trends in Brazil
,”
Int. J. Environ. Pollut.
 0957-4352, Vol.
30
,
2007
, pp.
197
212
. https://doi.org/10.1504/IJEP.2007.014700
41.
Sheehan
,
J.
,
Dunahay
,
T.
,
Benemann
,
J.
, and
Roessler
,
P.
, “
A Look Back at the U.S. Department of Energy’s Aquatic Species Program—Biodiesel from Algae
,” NREL Report No. NREL/TP-580–24190, National Renewable Energy Laboratory, Golden, CO,
1998
.
42.
Sina
Salim
, “
Biofuels from microalgae. Harvesting of algae for oil extraction
,” Wageningen University,
2009
, http://www.wur.nl.UK/, http://www.bpe.wur.nl/UK/Research/Projects/Biofuels+from+microalgae.+Harvesting+of+algae+for+oil+extraction/, (Last accessed 5 May
2009
).
This content is only available via PDF.
You do not currently have access to this content.