Abstract

An examination of the fracture surfaces found on residuals originating external to the specimen contacting indenter of a ASTM D2512 tested isotropic polymeric material has been conducted for the first time. The repeated appearance and interrelationship of a select series of distinct features was identified. Cracks which plunge from the surface into the bulk of the tested specimen were routinely observed. They are developed by the independent mechanism of sliding Hertzian fracture. Radial cracks, propagating through the entire thickness of the tested specimen, from the most central portion of the original specimen through to its back edge were always observed. They were developed by the independent mechanism of tensile hoop failure. This tensile hoop mechanism also caused the point loaded backside impact damage feature occasionally observed. Shield shaped cracks and indications of secondary point loaded impacts were also routinely observed. Extrinsically generated, finely crushed granular and/or flake powder was commonly found tenaciously adhering to the fractured and top edges of many of these residuals. This powder feature always exhibited indications of having flowed onto the residual and frequently indications of having experienced intense heating. The forced flow of the powder caused the powder’s surface to be heated by the mechanism of kinetic friction heating. While kinetic friction heating did generate features indicative of exposure to intense heat, there were effectively no lasting indications that ignition had originated on these external residuals.

References

1.
Gerzeski
R.
, “
Improving The D2512 LOX Compatibility Of Composites By Using Thermally Conductive Graphite Fibers
,” Final Report No. AFRL-ML-WP-TR-2005–4239, Materials And Manufacturing Directorate, Air Force Materials Command, Wright-Patterson Air Force Base, OH,
2005
.
2.
Tack
,
T.
,
McNamara
,
D.
,
Stoltzfus
,
J.
, and
Sircar
,
S.
, “
Aluminum-Lithium Alloys: Mechanical Property And Composition Effects On Liquid Oxygen Compatibility
,”
Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres, Fifth Volume, ASTM STP 1111
,
J.
Stoltzfus
, and
K.
McIlroy
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1991
, pp.
216
239
. https://doi.org/10.1520/STP17765S
3.
Reed
,
R.
,
Simon
,
N.
,
Berger
,
J.
, and
McColskey
,
J. D.
, “
Influence of specimen absorbed energy in LOX mechanical impact tests
,”
Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Fifth Volume, ASTM STP 1111
,
J.
Stoltzfus
, and
K.
McIlroy
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1991
, pp.
381
398
. https://doi.org/10.1520/STP17776S
4.
Reed
,
R.
,
Simon
,
N.
,
McColskey
,
J.
,
Berger
,
J.
,
McCowen
,
C.
,
Bransford
,
J.
,
Drexler
,
E.
, and
Walsh
,
R.
, “
Aluminum Alloys For Cryogenic Tanks: Oxygen Compatibility Vol 1
,” Report No. AL TR 90 063, Astronautics Laboratory, Air Force Space Technology Center, Space Systems Division, Air Force Systems Command, Edwards AFB, CA,
1990
, pp.
1
196
.
5.
Reed
,
R.
,
Simon
,
N.
,
McColskey
,
J.
,
McCowen
,
C.
, and
Drexler
,
E.
, “
Aluminum Alloys For ALS Cryogenic Tanks: Oxygen Compatibility Vol. 2
,” Report No. AL TR 90 063, Astronautics Laboratory, Air Force Space Technology Center, Space Systems Division, Air Force Systems Command, Edwards AFB, CA,
1990
, pp.
1
118
.
6.
McColskey
,
J.
,
Reed
,
R.
,
Simon
,
N.
, and
Bransford
,
J.
, “
Recommended Changes in ASTM Test Methods D2512-82 and G86-84 for Oxygen Compatibility Mechanical Impact Tests on Metals
,”
Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres: Fifth Volume, ASTM STP 1111
,
J.
Stoltzfus
, and
K.
McIlroy
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1991
, pp.
126
153
. https://doi.org/10.1520/STP17760S
7.
Lucas
,
W.
and
Riehl
,
W.
, “
An Instrument for Determination of Impact Sensitivity of Materials in Contact with Liquid Oxygen
,” Report No. DSN-TR-2–58, Army Ballistic Missile Agency, Redstone Arsenal, AL,
1958
, pp.
1
20
.
8.
Hauser
R.
,
Sykes
G.
, and
Rumpel
W.
, ”
Mechanically Initiated Reactions of Organic Materials in Missile Oxidizers
,” Report No. TR 61–324, Elastomers and Coatings Branch, Nonmetallic Materials Laboratory, Directorate Of Materials and Processes, ASD, AFSC, USAF, WPAFB, Contract No. AF 33(616)-7271, The Martin Company, Air Force Systems Command, Aeronautical Systems Division, Directorate of Materials and Process, United States Air Force, Wright-Patterson AFB, OH,
1961
, pp.
1
281
.
9.
Riehl
,
W.
,
Key
,
C.
, and
Gayle
,
J.
, “
Reactivity Of Titanium With Oxygen
,” Report No. NASA TR R-180, NASA, George C. Marshall Space Flight Center, Huntsville, AL,
1963
, pp.
1
113
.
10.
ASTM Standard D2512–95,
1995
, “
Standard Test Method for Compatibility of Materials with Liquid Oxygen (Impact Sensitivity Threshold and Pass-Fail Techniques)
,” Annual Book of ASTM Standards, Vol.
14.04
, ASTM International, West Conshohocken, PA, pp.
1
-
13
.
11.
ASTM Standard G86–98,
2005
, “
Standard Test Method for Determining Ignition Sensitivity of Materials to Mechanical Impact in Ambient Liquid Oxygen and Pressurized Liquid and Gaseous Oxygen Environments
,” Annual Book of ASTM Standards, Vol.
14.04
, ASTM International, West Conshohocken, PA, pp.
1
-
18
.
12.
Ambient LOX Impact Testing NASA-STD-6001: Test 13A, ED36-OWI-032 Rev A,
1999
, pp.
1
34
.
13.
High Pressure Impact Testing NASA-STD-6001: Test 13B, ED36-OWI-033 Rev A,
1999
, pp.
1
52
.
14.
Bransford
,
J.
,
Bryan
,
C.
,
Frye
,
G.
, and
Stohler
,
S.
, “
LOX/GOX Mechanical Impact Tester Assessment
,” Report No. NASA TM 74106, JFK Space Center, Orlando, FL,
1980
.
15.
Key
,
C.
and
Riehl
,
W.
, “
Compatibility Of Materials With Liquid Oxygen
,” Report No. NASA-TM X-985, NASA, George C. Marshall Space Flight Center, Huntsville, AL,
1964
, pp.
1
72
.
16.
Key
C.
, “
Compatibility Of Materials With Liquid Oxygen I
,“ Report No. NASA-TM X-64711, NASA, Astronautics Laboratory, Science and Engineering, George C. Marshall Space Flight Center, Huntsville, AL,
1972
, pp.
1
221
.
17.
Langitan
,
F.
and
Lawn
,
B.
, “
Hertzian Fracture Experiments on Abraded Glass Surfaces as Definitive Evidence for an Energy Balance Explanation of Aurbach’s Law
,”
J. Appl. Phys.
 0021-8979, Vol.
40
,
1969
, pp.
4009
4017
. https://doi.org/10.1063/1.1657136
18.
Lawn
,
B.
and
Swain
,
M.
, “
Microfracture Beneath Point Indentations in Brittle Solids
,”
J. Mater. Sci.
 0022-2461, Vol.
10
,
1975
, pp.
113
122
. https://doi.org/10.1007/BF00541038
19.
Evans
,
A.
, “
Strength Degradation By Projectile Impacts
,”
J. Am. Ceram. Soc.
 0002-7820, Vol.
56
,
1973
, pp.
405
409
. https://doi.org/10.1111/j.1151-2916.1973.tb12710.x
20.
Lawn
,
B.
,
Fracture of Brittle Solids
, 2nd ed.,
Cambridge University Press
,
New York
,
1993
, Chaps. 8 and 9, pp.
249
334
. https://doi.org/10.1017/CBO9780511623127.010
21.
Lawn
,
B.
and
Wilshaw
,
R.
, “
Review Indentation Fracture: Principles and Applications
,”
J. Mater. Sci.
 0022-2461, Vol.
10
,
1975
, pp.
1049
1081
. https://doi.org/10.1007/BF00823224
22.
Gerzeski
,
R.
, “
Hertzian Fracture, Kinetic Friction and the Mechanical Impact LOX Compatibility Testing of Polymers and Polymer Matrix Composites
,”
J. ASTM Int.
 1546-962X, Vol.
3
,
2006
, pp.
1
32
.
23.
Wilshaw
,
T.
, “
The Hertzian Fracture Test
,”
J. Phys. D: Appl. Phys.
 0022-3727, Vol.
4
,
1971
, pp.
1567
1581
. https://doi.org/10.1088/0022-3727/4/10/316
24.
Frank
,
F.
and
Lawn
,
B.
, “
“On the Theory of Hertzian Fracture
,”
Proc. R. Soc. London, Ser. A
 0950-1207, Vol.
299
,
1967
, pp.
291
306
. https://doi.org/10.1098/rspa.1967.0137
25.
Hamilton
G.
and
Goodman
L.
, “
The Stress Field Created by a Circular Sliding Contact
,”
J. Appl. Mech.
 0021-8936, Vol.
33
,
1966
, pp.
371
376
.
26.
Lawn
,
B.
, “
“Partial Cone Crack Formation in a Brittle Material Loaded with a Sliding Spherical Indenter
,”
Proc. R. Soc. London, Ser. A
 0950-1207, Vol.
299
,
1967
, pp.
307
316
. https://doi.org/10.1098/rspa.1967.0138
27.
Lawn
,
B.
,
Wiederhorn
,
S.
, and
Roberts
,
D.
, “
Effect of Sliding Friction Forces on the Strength of Brittle Materials
,”
J. Mater. Sci.
 0022-2461, Vol.
19
,
1984
, pp.
2561
2569
. https://doi.org/10.1007/BF00550810
28.
Gilroy
D.
and
Hirst
W.
, “
Brittle Fracture of Glass Under Normal and Sliding Loads
,”
Br. J. Appl. Phys., J. Phys. D
 , Vol.
2
,
1969
, pp.
1784
1787
.
29.
Fineberg
,
J.
,
Gross
,
S.
,
Marder
,
M.
, and
Swinney
,
H.
, “
Instability in Propagation of Fast Cracks
,”
Phys. Rev. B
 0163-1829, Vol.
45
,
1992
, pp.
5146
5154
. https://doi.org/10.1103/PhysRevB.45.5146
30.
Fineberg
,
J.
,
Gross
,
S.
,
Marder
,
M.
, and
Swinney
,
H.
, “
Instability in Dynamic Fracture
,”
Phys. Rev. Lett.
 0031-9007, Vol.
67
,
1991
, pp.
457
460
. https://doi.org/10.1103/PhysRevLett.67.457
31.
Ravi-Chandar
,
K.
and
Knauss
,
W.
, “
An Experimental Investigation into Dynamic Fracture: II. Microstructural Aspects
,”
Int. J. Fract.
 0376-9429, Vol.
26
,
1984
, pp.
65
80
. https://doi.org/10.1007/BF01152313
32.
Ravi-Chandar
,
K.
and
Knauss
,
W.
, “
An Experimental Investigation into Dynamic Fracture: IV. On the Interaction of Stress Waves with Propagating Cracks
,”
Int. J. Fract.
 0376-9429, Vol.
26
,
1984
, pp.
189
200
. https://doi.org/10.1007/BF01140627
33.
Sharon
,
E.
,
Gross
,
S.
, and
Fineberg
,
J.
, “
Local Crack Branching as a Mechanism for Instability in Dynamic Fracture
,”
Phys. Rev. Lett.
 0031-9007, Vol.
74
,
1995
, pp.
5096
5099
. https://doi.org/10.1103/PhysRevLett.74.5096
34.
Abdullah
,
M.
and
Ambrose
,
D.
, “
Maximum Velocity of Crack Propagation in Plexiglass
,”
Methods of Experimental Physics
, University of Minnesota,
2006
, http://mxp.physics.umn.edu/s06/Projects/S06_Break/.
35.
Sharon
,
E.
,
Gross
,
S.
, and
Fineberg
,
J.
, “
Energy Dissipation in Dynamic Fracture
,”
Phys. Rev. Lett.
 0031-9007, Vol.
76
,
1996
, pp.
2117
2120
. https://doi.org/10.1103/PhysRevLett.76.2117
36.
Ravi-Chandar
,
K.
and
Knauss
,
W.
, “
An Experimental Investigation into Dynamic Fracture: III. On Steady-State Crack Propagation and Crack Branching
,”
Int. J. Fract.
 0376-9429, Vol.
26
,
1984
, pp.
141
154
. https://doi.org/10.1007/BF01157550
37.
Tian
,
X.
and
Kennedy
,
F.
, Jr.
, “
Contact Surface Temperature Models For Finite Bodies In Dry And Boundary Lubricated Sliding
,”
ASME J. Tribol.
 0742-4787, Vol.
115
,
1993
, pp.
411
418
. https://doi.org/10.1115/1.2921652
38.
Quinn
,
T.
and
Winer
,
W.
, “
An Experimental Study of the “Hot Spots” Occurring During The Oxidational Wear of Tool Steel On Sapphire
,”
J. Tribol.
 0742-4787, Vol.
109
,
1987
, pp.
315
320
. https://doi.org/10.1115/1.3261358
39.
Tripathy
B.
and
Furey
M.
, “
Tribological Behavior of Unidirectional Graphite-Epoxy and Carbon-PEEK Composites
,”
Wear
 0043-1648, Vols.
162–164
,
1993
, pp.
385
396
. https://doi.org/10.1016/0043-1648(93)90522-N
40.
Bowden
,
F.
and
Tabor
,
D.
,
FRICTION: An Introduction to Tribology
,
Krieger Publishing Co.
,
Malabar, FL
,
1982
.
41.
Heighway
,
R.
and
Taylor
,
D.
, “
Transient Temperature Rises During The Rubbing Of Metals On Glass
,”
Wear
 0043-1648, Vol.
9
,
1966
, pp.
310
319
. https://doi.org/10.1016/0043-1648(66)90005-6
42.
Bowden
,
F.
and
Tabor
,
D.
,
Friction And Lubrication
,
Methuen & Co. LTD
,
London, UK
,
1967
.
43.
Lancaster
,
J.
, “
Basic Mechanisms of Friction and Wear of Polymers
,”
Plast. Polym.
 0300-3582, Vol.
41
,
1973
, pp.
297
306
.
44.
Michael
,
P.
,
Aized
,
D.
,
Rabinowicz
,
E.
, and
Iwasa
,
Y.
, “
Mechanical Properties and Static Friction Behaviour of Epoxy Mixes at Room Temperature and at 77 K
,”
Cryogenics
 0011-2275, Vol.
30
,
1990
, pp.
775
786
. https://doi.org/10.1016/0011-2275(90)90275-H
45.
Pascoe
,
M.
and
Tabor
,
D.
, “
“The Friction and Deformation of Polymers
,”
Proc. R. Soc. London, Ser. A
 0950-1207, Vol.
235
,
1956
, pp.
210
224
. https://doi.org/10.1098/rspa.1956.0077
46.
Skinner
,
J.
,
Gane
,
N.
, and
Tabor
,
D.
, “
Micro-Friction of Graphite
,”
Nature (London), Phys. Sci.
 0300-8746, Vol.
232
,
1971
, pp.
195
196
.
47.
McClintock
F.
and
Argon
A.
, “
Friction and Wear
,”
Mechanical Behavior of Materials
,
Addison-Wesley Publishing
,
Reading, MA
,
1966
, Chap. 20, pp. 657–
673
.
48.
Bowden
,
F.
, “
The Mechanism Of Friction
, ”
Proc. R. Soc. London, Ser. A
 0950-1207, Vol.
212
,
1952
, pp.
440
449
. https://doi.org/10.1098/rspa.1952.0093
49.
Hanmin
,
Z.
,
Guoren
,
H.
, and
Guicheng
,
Y.
, “
Friction and Wear of Poly(Phenylene Sulphide) and Its Carbon Fibre Composites I: Unlubricated
,”
Wear
 0043-1648, Vol.
116
,
1987
, pp.
59
68
. https://doi.org/10.1016/0043-1648(87)90267-5
50.
Briscoe
,
B.
, “
Wear of Polymers: An Essay on Fundamental Aspects
,”
Tribol. Int.
 0301-679X, Vol.
14
,
1981
, pp.
231
243
. https://doi.org/10.1016/0301-679X(81)90050-5
51.
Gerzeski
R.
, “
LOX Compatible Toughened Bismaleimide Matrix Thermally Conductive Fiber Composites Part I: Composite Fabrication Viability And Thermal Conductivity Measurement
,”
J. Test. Eval.
 0090-3973, Vol.
36
,
2008
, pp.
41
54
.
52.
Gerzeski
R.
, “
LOX Compatible Toughened Bismaleimide Matrix Thermally Conductive Fiber Composites Part II: ASTM D2512 Specimen Fabrication, Cleaning And Testing
,”
J. Test. Eval.
 0090-3973, Vol.
36
,
2008
, pp.
55
68
.
This content is only available via PDF.
You do not currently have access to this content.