Abstract

Fracture toughness testing on standard specimens in the ductile to brittle transition regime is well established and standardized by the ASTM since 1997. However, its applicability to structural components and its potential conservatism remain a subject of concern. In structural integrity assessment of reactor pressure vessels submitted to an accidental loading condition called pressurized thermal shock, the cladding is generally considered not to play any role and is neglected. However, cladding has the ability to restrain the crack from opening due to its good ductility. To investigate the potential safety margin, a semielliptical crack introduced by fatigue is covered by a stainless steel cladding and specimens are tested under biaxial conditions in the ductile to brittle transition regime. Test results shows that cladding plays a significant role and contributes to an additional safety margin. In addition, cladding increases the potential for crack arrest.

References

1.
Gonnet
,
B.
and
Menjon
,
G.
, “
Under-Cladding Cracking—La Fissuration sous Revetement, IAEA-CN-39/14, Current Nuclear Power Plant Safety Issues
,”
Proceedings of an International Conference on Current Nuclear Power Plant Safety Issues
, Stockholm, Sweden, October 20–24,
1980
, IAEA, Vienna, Austria, Vol.
3
, pp.
65
76
(in French).
2.
Sermadiras
,
P. H.
,
Berger
,
J. Cl.
, and
Samman
,
J.
, “
Summary of the Actions Developed by EDF in Order to Dimension Underclad Defects in PWR Reactor Vessel Nozzles
,”
Sixth International Conference on NDE in the Nuclear Industry
, Zurich, Switzerland, 28 Nov.–2 Dec.,
1984
, ASM, Metals Park, OH, pp.
751
761
.
3.
Bethmont
,
M.
,
Soulat
,
P.
, and
Houssin
,
B.
, “
Toughness Properties of End of Life—Cladding
,”
Proceedings of a IAEA Specialists Meeting
, Espoo, Finland October 23–26,
1995
, International Working Group on Life Management of Nuclear Power Plants, Vienna, Austria, pp.
155
168
.
4.
US NRC
, “
Cladding Crack Found in Original RVH Cavity
,” Davis Besse Condition Report No. 02–05705, US NRC, Washington, DC,
2002
.
5.
IRSN Agency
, “
Underclad Cracks in Tricastin 1 Reactor Pressure Vessel
IRS Report No. 0007368, Fontenay-aux-Roses, France,
2000
.
6.
Scibetta
,
M.
,
Bens
,
L.
,
Puzzolante
,
J.-L.
,
Van Houdt
,
L.
, “
Characterization of the Lemoniz Reactor Pressure Vessel Cladding
,” Report No. SCK-CEN-R-4121, SCK-CEN, Mol, Belgium, March,
2005
.
7.
Vandermeulen
,
W.
,
Scibetta
,
M.
,
Leenaers
,
A.
,
Schuurmans
,
J.
, and
Gérard
,
R.
, “
“Measurement of the Young Modulus Anisotropy of a Reactor Pressure Vessel Cladding
,”
J. Nucl. Mater.
 0022-3115, Vol.
372
,
2008
, pp.
249
255
. https://doi.org/10.1016/j.jnucmat.2007.03.213
8.
Scibetta
,
M.
,
Lucon
,
E.
, and
van Walle
,
E.
, “
BR2 Irradiation of the Cladding of the Lemoniz Reactor Pressure Vessel
,” Report No. SCK⋅CEN-R-4333, SCK-CEN, Mol, Belgium, April
2006
.
9.
Scibetta
,
M.
and
Lucon
,
E.
, “
Tensile and Fracture Toughness Properties of the Cladding of the Lemoniz Reactor Pressure Vessel Irradiated in the BR2 Reactor
,” Report No. SCK⋅CEN-R-4456, SCK-CEN, Mol, Belgium,
2007
.
10.
Wimunc
,
E. A.
, “
How Serious Are Vessel Cladding Failure?
,”
Power React. Technol.
, Vol.
9
,
1966
, pp.
101
109
.
11.
Baumjohann
,
F.
, “
Calculation of Thermaplastic Stresses of a Reactor Pressure Vessel with Cladding from Stress-Relief Annealing up to a Thermal Shock
,”
Nucl. Eng. Des.
 0029-5493, Vol.
96
,
1986
, pp.
323
335
. https://doi.org/10.1016/0029-5493(86)90272-4
12.
McCabe
,
D. E.
, “
Fracture Evaluation of Surface Cracks Embedded in Reactor Vessel Cladding
,”
NUREG/CR-5207
,
US NRC
,
Washington, DC
,
1988
.
13.
Sattari-Far
,
I.
, “
Three-Dimensional Elastic-Plastic Fe-Analyses of Cladded Reactor Pressure Vessels Containing Surface Flaws
,”
Pressure Vessels and Piping Conference
, San Diego, CA, June
1991
, ASME, New York, pp.
105
110
.
14.
Griesbach
,
T. J.
, “
Effect of Cladding on Stress Intensity Factors During Normal Plant Operation
,”
Proceedings of the 1994 Pressure Vessels and Piping Conference
, Minneapolis, MN, June
1994
, Codes and Standards for Quality Engineering, American Society of Mechanical Engineers, Pressure Vessels and Piping Division, PVP, ASME, New York, Vol.
285
, pp.
145
148
.
15.
Gamble
,
R. M.
, “
A Probabilistic Assessment of Reactor Vessel Integrity During Pressuring Thermal Transients
,”
Proceedings of the Third International Seminar on Assuring Structural Integrity of Steel Reactor Pressure Boundary Components
, Montery, CA 29-30 August,
1984
, Elsevier Applied Science, London, pp.
369
379
.
16.
Kim
,
J.-S.
,
Choi
,
J.-B.
,
Kim
,
Y.-J.
, and
Park
,
Y.-W.
, “
Investigation on Constraint Effect of Reactor Pressure Vessel Under Pressurized Thermal Shock
,”
Nucl. Eng. Des.
 0029-5493, Vol.
219
,
2003
, pp.
197
206
. https://doi.org/10.1016/S0029-5493(02)00282-0
17.
Kikuchi
,
M.
,
Miyamoto
,
H.
, and
Sugawara
,
S.
, “
Evaluation of the J integral and the cladding effect of a crack in the reactor pressure vessel
,”
Bull. JSME
 0021-3764, Vol.
29
,
1986
, pp.
4026
4030
.
18.
Kikuchi
,
M.
,
Miyamoto
,
H.
, and
Shindo
,
T.
, “
Evaluation of the J Integral of a Crack in the Pressure Vessel Under Thermal Transient Loading
,”
J. Pressure Vessel Technol., Trans. Am. Soc. Mech. Eng., Pressure Vessels Piping Div.
, Vol.
108
,
1986
, pp.
312
319
.
19.
Lee
,
T.-J.
,
Choi
,
J. B.
,
Kim
,
Y. J.
, and
Park
,
Y. W.
, “
A Parametric Study on Pressure-Temperature Limit Curve Using 3-D Finite Element Analyses
,”
Nucl. Eng. Des.
, Vol.
214
,
2002
, pp.
73
81
. https://doi.org/10.1016/S0029-5493(02)00016-X
20.
Iskander
,
S. K.
,
Sauter
,
A. W.
, and
Foehl
,
J.
, “
Reactor Pressure Vessel Structural Implications of Embrittlement to the Pressurized-Thermal-Shock Scenario
,”
ASTM Spec. Tech. Publ.
, Vol.
909
,
1986
, pp.
163
176
.
21.
Sauter
,
A.
, “
Influence of Cladding on Linear Elastic RPV-Analysis During Loss of Coolant Accident
,”
Nucl. Eng. Des.
, Vol.
76
,
1983
, pp.
347
358
. https://doi.org/10.1016/0029-5493(83)90118-8
22.
Smith
,
E.
, “
The Restraining Effect of Austenitic Cladding on the Extension of a Three-Dimensional Crack into the Wall of a Water-Cooled Nuclear Reactor Pressure Vessel During a Hypothetical Overcooling Accident
,”
Nucl. Eng. Des.
, Vol.
78
,
1984
, pp.
79
84
. https://doi.org/10.1016/0029-5493(84)90074-8
23.
Miyamoto
,
H.
,
Kikuchi
,
M.
,
Okazaki
,
T.
, and
Kubo
,
M.
, “
The J Integral Evaluation of a Corner Crack Under Thermal Transient Loading Condition
,”
Nucl. Eng. Des.
, Vol.
75
(
2
),
1983
, pp.
213
222
. https://doi.org/10.1016/0029-5493(83)90018-3
24.
Moinereau
,
D.
,
Rousselier
,
G.
, and
Bethmong
,
M.
, “
Behavior of Underclad Cracks in Reactor Pressure Vessels: Evaluation of Mechanical Analyses used in French PRV Integrity Assessment by Cleavage Fracture Tests on Large Scale Plates
,”
Am. Soc. Mech. Eng., Pressure Vessels Piping Div., PVP
, Vol.
250
,
1993
, pp.
47
59
.
25.
Moinereau
,
D.
,
Rousselier
,
G.
, and
Bethmont
,
M.
, “
Evaluation of Mechanical Analyses used in French RPV Integrity Assessment by Cleavage Fracture Tests on Large Scale Cladded Plates
,”
Conference: SISSI 94: International Seminar on Structural Integrity
, Saclay, France, 28–29 Apr.
1995
, CEA, Paris, pp.
279
290
.
26.
Blauel
,
J. G.
,
Hodulak
,
L.
,
Nagel
,
G.
,
Schmitt
,
W.
, and
Siegele
,
D.
, “
Effect of Cladding on the Initiation Behaviour of Finite Length Cracks in an RPV Under Thermal Shock
,”
Nucl. Eng. Des.
, Vol.
171
,
1997
, pp.
179
188
. https://doi.org/10.1016/S0029-5493(96)01325-8
27.
Choi
,
S. N.
,
Jang
,
K. S.
,
Kim
,
J. S.
,
Choi
,
J. B.
, and
Kim
,
Y. J.
, “
Effect of Cladding on the Stress Intensity Factors in the Reactor Pressure Vessel
,”
Nucl. Eng. Des.
, Vol.
199
,
2000
, pp.
101
111
. https://doi.org/10.1016/S0029-5493(99)00059-X
28.
Simonen
,
F. A.
and
Johnson
,
K. I.
, “
Effects of Residual Stresses and Underclad Flaws on the Reliability of Reactor Pressure Vessels
,”
Pressure Vessels and Piping Conference
, Denver, CO, June
1993
, ASME, New York, NY, Vol.
251
, pp.
101
113
.
29.
Simonen
,
F. A.
, “
Clad Failure Models for Underclad Flaws in Reactor Pressure Vessels
,”
Pressure Vessels and Piping Conference
, Minneapolis, MN, June
1994
, ASME, New York, NY, Vol.
280
, pp.
101
113
.
30.
Sherry
,
A. H.
,
Richardson
,
T.
,
Sillitoe
,
B.
, and
Trusty
,
F.
, “
Analysis of benchmark PTS problem: Comparison of R6 and 3D-finite element results
,”
Am. Soc. Mech. Eng., Pressure Vessels Piping Div., PVP
, Vol.
392
,
1999
, pp.
239
249
.
31.
Schmitt
,
W.
,
Hodulak
,
L.
, and
Sun
,
D. Z.
, “
Toughness of the Austenitic Cladding and Its Influence on the Safety of a Reactor Pressure Vessels
,”
Transactions of the 13th International Conference on Structural Mechanics in Reactor Technology
, Port Alegre, 13–18 Aug.
1995
, IASMIRT, Raleigh, NC, Vol.
2
, pp.
379
384
.
32.
Haggag
,
F. M.
and
Iskander
,
S. K.
, “
Results of Irradiated Cladding Tests and Clad Plate Experiments
,”
Nucl. Eng. Des.
, Vol.
118
,
1990
, pp.
297
304
. https://doi.org/10.1016/0029-5493(90)90031-R
33.
Iskander
,
S. K.
,
Nanstad
,
R. K.
,
Robinson
,
G. C.
, and
Oland
,
C. B.
, “
“Experimental Study of the Effect of Stainless Steel Cladding on the Structural Integrity of Flawed Steel Plates in Bending
,”
Advances in Fracture and Fatigue for the 1990’s–Volume II: Non-Linear Analysis and Applications
,
American Society of Mechanical Engineers, Pressure Vessels and Piping Division, PVP
,
New York
,
1989
, pp.
87
92
.
34.
Fayolle
,
P.
,
Churier-Bossennec
,
H.
, and
Faidy
,
C.
, “
J estimation scheme for cracks near the cladding of a reactor pressure vessel
,” in
Pressure Vessel Fracture, Fatigue, and Life Management
,
S.
Bhandari
,
P. P.
Milella
, and
W. E.
Pennell
, Eds.,
American Society of Mechanical Engineers, Pressure Vessels and Piping Division, PVP
,
New York
,
1992
, Vol.
233
, pp.
27
34
.
35.
Moinereau
,
D.
,
Messelier-Gouze
,
C.
,
Bezdikian
,
G.
,
Ternon-Morin
,
F.
,
Meziere
,
Y.
,
Faidy
,
C.
,
Pellissier-Tanon
,
A.
,
Vagner
,
J.
, and
Guichard
,
D.
, “
Some Recent Developments in French Reactor Pressure Vessel Structural Integrity Assessment
,”
Proceedings of the 1998 ASME/JSME Joint Pressure Vessels and Piping Conference
, San Diego, CA, July 26–30,
1998
, American Society of Mechanical Engineers, Pressure Vessels and Piping Division, PVP, New York, Vol.
365
, pp.
45
58
.
36.
Scibetta
,
M.
,
Schuurmans
,
J.
, and
Lucon
,
E.
, “
Experimental Study of the Fracture Toughness Transferability to Pressurized Thermal Shock Representative Loading Conditions
,”
J. ASTM Int.
, Vol.
5
,
2008
, paper ID JAI101561. https://doi.org/10.1520/JAI101561
37.
Bass
,
B. R.
,
McAfee
,
W. J.
,
Williams
,
P. T.
, and
Pennell
,
W. E.
, “
Fracture Assessment of Shallow-Flaw Cruciform Beams Tested Under Uniaxial and Biaxial Loading Conditions
,”
Nucl. Eng. Des.
, Vol.
188
,
1999
, pp.
259
288
. https://doi.org/10.1016/S0029-5493(99)00035-7
38.
Scibetta
,
M.
, and
Lucon
,
E.
Feasibility of Representative Cladding Deposition
,” Report No. SCK⋅CEN-R-4558, SCK-CEN, Mol, Belgium,
2007
.
39.
Lucon
,
E.
,
Leenaers
,
A.
, and
Scibetta
,
M.
Study of the Fracture Toughness Variation within the Thickness of RPV Forgings—Part 2: Lemoniz
,” Report No. SCK⋅CEN-R-4607, SCK-CEN, Mol, Belgium,
2008
.
40.
ASTM E1921, 2008ae1,
2008
, “
Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range
,” Annual Book of ASTM Standards, Vol.
03.01
, ASTM International, West Conshohocken, PA.
41.
ASTM E1820,
2008
, “
Standard Test Method for Measurement of Fracture Toughness
Annual Book of ASTM Standards, Vol.
03.01
, ASTM International, West Conshohocken, PA.
42.
Ganta
,
B. R.
,
Ayres
,
D. J.
, and
Hijeck
,
P. J.
, “
Cladding Stresses in a Pressurized Water Reactor Vessel Following Application of the Stainless Steel Cladding, Heat Treatment and Initial Service
,”
Am. Soc. Mech. Eng., Pressure Vessels Piping Div., PVP
, Vol.
213
,
1991
, pp.
245
252
.
43.
Bertram
,
W.
, “
Residual Stresses in Weld-Clad Reactor Pressure Vessel Steel
,”
Structural Mechanics in Reactor Technology
, 1–5 September
1975
, IASMIRT, Raleigh, NC.
44.
Kostylev
,
V. I.
and
Margolin
,
B. Z.
, “
Determination of residual stress and strain fields caused by cladding and tempering of reactor pressure vessels
,”
Int. J. Pressure Vessels Piping
, Vol.
77
,
2000
, pp.
723
735
. https://doi.org/10.1016/S0308-0161(00)00062-4
45.
McCabe
,
D. E.
, “
Fracture Evaluation of Surface Cracks Embedded in Reactor Vessel Cladding
,” Technical Report No. NUREG/CR-5207; MEA-2285, Division of Engineering, Materials Engineering Associates, Inc., Lanham, MD,
1988
.
46.
Moinereau
,
D.
,
Bethmont
,
M.
,
Chas
,
G.
, and
Rousselier
,
G.
, “
Cleavage Fracture of Plates with Small Underclad Crack: Elements Presentation and Interpretation by Fracture Mechanics
,”
Am. Soc. Mech. Eng., Pressure Vessels Piping Div., PVP
, Vol.
213
,
1991
, pp.
53
60
.
47.
Roos
,
E.
, “
Analysis of Fracture Mechanics of the Reactor Pressure Vessel (RPV) by Taking into Account Residual Stresses Part 2: Stress Analysis, Assessment of Integrity and Experimental Investigation
,”
VGB PowerTech
, Vol.
81
,
2001
, pp.
91
99
(in German).
48.
Schimmoeller
,
H. A.
and
Ruge
,
J. L.
, “
Estimation of Residual Stresses in Reactor Pressure Vessel Steel Specimens Clad by Stainless Steel Strip Electrodes
,”
International Conference on Residual Stresses in Welded Construction and Their Effects
, November
1977
, Welding Institute, London, Vol.
1
, pp.
251
258
.
49.
Van Renterghem
,
W.
and
Kaers
,
K.
, “
Characterisation of the Soudokay Cladding Deposition
,” Report No. SCK⋅CEN-R-4700, Mol, Belgium,
2008
.
50.
Scibetta
,
M.
,
Link
,
R.
,
Schuurmans
,
J.
, and
Lucon
,
E.
, “
Towards Crack Arrest Testing Using Miniature Specimens
,”
J. ASTM Intl.
, Vol.
5
,
2008
, paper ID JAI101002. https://doi.org/10.1520/JAI101002
This content is only available via PDF.
You do not currently have access to this content.