Abstract

The steady boundary layer flow resulting from the stretching of a flat surface with a velocity proportional to the distance from a fixed point in a nanofluid under uniform heat and mass flux has been investigated numerically and using the nanofluid model proposed by Buongiorno (“Convective Transport in Nanofluids, ASME J. Heat Transfer, Vol. 128, 2006, pp. 240–250). The effects of Brownian motion and thermophoresis are incorporated in the model in order to obtain similarity solutions of the governing equations in terms of different parameters. The variation of the reduced Nusselt and reduced Sherwood numbers with the Prandtl number (Pr) and the Lewis number (Le) for various values of the Brownian motion parameter (Nb) and the thermophoresis parameter (Nt) is presented in tabular and graphical forms. It was found that the reduced Nusselt number is a decreasing function of each parameter (Pr, Le, Nb, and Nt), whereas the reduced Sherwood number is an increasing function of Nb and a decreasing function of Nt for each Le and Pr number.

References

1.
Vleggaar
,
J.
, “
Laminar Boundary Layer Behaviour on Continuous Accelerating Surface
,”
Chem. Eng. Sci.
, Vol.
32
,
1977
, pp.
1517
1525
. https://doi.org/10.1016/0009-2509(77)80249-2
2.
Crane
,
L. J.
, “
Flow past a Stretching Plate
,”
Z. Angew. Math. Phys.
, Vol.
21
,
1970
, pp.
645
647
. https://doi.org/10.1007/BF01587695
3.
Lakshmisha
,
K. N.
,
Venkateswaran
,
S.
, and
Nath
,
G.
, “
Three-Dimensional Unsteady Flow with Heat and Mass Transfer over a Continuous Stretching Surface
,”
J. Heat Transfer
, Vol.
110
,
1988
, pp.
590
595
. https://doi.org/10.1115/1.3250533
4.
Wang
,
C. Y.
, “
The Three-Dimensional Flow due to a Stretching Flat Surface
,”
Phys. Fluids
, Vol.
27
,
1984
, pp.
1915
1917
. https://doi.org/10.1063/1.864868
5.
Andersson
,
H. I.
and
Dandapat
,
B. S.
, “
Flow of a Power-Law Fluid over a Stretching Sheet
,”
Stability and Applied Analysis of Continuous Media
, Vol.
1
,
1991
, pp.
339
347
.
6.
Magyari
,
E.
and
Keller
,
B.
, “
Exact Solutions for Self-Similar Boundary-Layer Flows Induced by Permeable Stretching Walls
,”
Eur. J. Mech. B/Fluids
, Vol.
19
,
2000
, pp.
109
122
. https://doi.org/10.1016/S0997-7546(00)00104-7
7.
Sparrow
,
E. M.
and
Abraham
,
J. P.
, “
Universal Solutions for the Streamwise Variation of the Temperature of a Moving Sheet in the Presence of a Moving Fluid
,”
Int. J. Heat Mass Transfer
, Vol.
48
,
2005
, pp.
3047
3056
. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.028
8.
Abraham
,
J. P.
and
Sparrow
,
E. M.
, “
Friction Drag Resulting from the Simultaneous Imposed Motions of a Freestream and Its Bounding Surface
,”
Int. J. Heat Fluid Flow
, Vol.
26
,
2005
, pp.
289
295
. https://doi.org/10.1016/j.ijheatfluidflow.2004.08.007
9.
Grupka
,
J. L.
and
Bobba
,
K. M.
, “
Heat Transfer Characteristics of a Continuous Stretching Surface with Variable Temperature
,”
J. Heat Transfer
, Vol.
107
,
1985
, pp.
248
250
. https://doi.org/10.1115/1.3247387
10.
Gupta
,
P. S.
and
Gupta
,
A. S.
, “
Heat and Mass Transfer on a Stretching Sheet with Suction or Blowing
,”
Can. J Chem. Eng.
, Vol.
55
,
1977
, pp.
744
746
. https://doi.org/10.1002/cjce.5450550619
11.
Andersson
,
H. I.
, “
Slip Flow Past a Stretching Surface
,”
Acta Mech.
, Vol.
158
,
2002
, pp.
121
125
. https://doi.org/10.1007/BF01463174
12.
Dutta
,
B. K.
,
Roy
,
P.
, and
Gupta
,
A. S.
, “
Temperature Field in Flow over a Stretching Sheet with Uniform Heat Flux
,”
Int. Commun. Heat Mass Transfer
, Vol.
12
,
1985
, pp.
89
94
. https://doi.org/10.1016/0735-1933(85)90010-7
13.
Fang
,
T.
, “
Flow and Heat Transfer Characteristics of Boundary Layers over a Stretching Surface with a Uniform-Shear Free Stream
,”
Int. J. Heat Mass Transfer
, Vol.
51
,
2008
, pp.
2199
2213
. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.013
14.
Labropulu
,
F.
,
Li
,
D.
, and
Pop
,
I.
, “
Non-orthogonal Stagnation-Point Flow towards a Stretching Surface in a Non-Newtonian Fluid with Heat Transfer
,”
Int. J. Therm. Sci.
, Vol.
49
,
2010
, pp.
1042
1050
. https://doi.org/10.1016/j.ijthermalsci.2009.12.005
15.
Wang
,
C. Y.
, “
Free Convection on a Vertical Stretching Surface
,”
Z. Angew. Math. Mech.
, Vol.
69
,
1989
, pp.
418
420
. https://doi.org/10.1002/zamm.19890691115
16.
Gorla
,
R. S. R.
and
Sidawi
,
I.
, “
Free Convection on a Vertical Stretching Surface with Suction and Blowing
,”
Appl. Sci. Res.
, Vol.
52
,
1994
, pp.
247
257
. https://doi.org/10.1007/BF00853952
17.
Vajravelu
,
K.
,
Prasad
,
K. V.
,
Lee
,
J.
,
Lee
,
C.
,
Pop
,
I.
, and
Van Gorder
,
R. A.
,“
Convective Heat Transfer in the Flow of Viscous Ag-Water and Cu-Water Nanofluids Over a Stretching Surface
,”
Int. J. Therm. Sci.
, Vol.
50
,
2011
, pp.
843
851
. https://doi.org/10.1016/j.ijthermalsci.2011.01.008
18.
Dutta
,
B. K.
,
Roy
,
P.
, and
Gupta
,
A. S.
, “
Temperature Field in Flow over a Stretching Sheet with Uniform Heat Flux
,”
Int. Commun. Heat Mass Transfer
, Vol.
12
,
1985
, pp.
89
94
. https://doi.org/10.1016/0735-1933(85)90010-7
19.
Ding
,
Y.
,
Chen
,
H.
,
Wang
,
L.
,
Yang
,
C.-Y.
,
He
,
Y.
,
Yang
,
W.
,
Lee
,
W. P.
,
Zhang
,
L.
, and
Huo
,
R.
, “
Heat Transfer Intensification Using Nanofluids
,”
Kona
, Vol.
25
,
2007
, pp.
23
38
.
20.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
, Vol.
46
,
2003
, pp.
3639
3653
. https://doi.org/10.1016/S0017-9310(03)00156-X
21.
Buongiorno
,
J.
, “
Convective Transport in Nanofluids
,”
J. Heat Transfer
, Vol.
128
,
2006
, pp.
240
250
. https://doi.org/10.1115/1.2150834
22.
Wang
,
X.-Q.
and
Majumdar
,
A. S.
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
, Vol.
46
,
2007
, pp.
1
19
. https://doi.org/10.1016/j.ijthermalsci.2006.06.010
23.
Xuan
,
Y.
and
Li
,
Q.
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
J. Heat Transfer
, Vol.
125
,
2003
, pp.
151
155
. https://doi.org/10.1115/1.1532008
24.
Nield
,
D. A.
and
Kuznetsov
,
A. V.
, “
The Cheng-Minkowycz Problem for Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
, Vol.
52
,
2009
, pp.
5792
5795
. https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.024
25.
Cheng
,
P.
and
Minkowycz
,
W. J.
, “
Free Convection about a Vertical Flat Plate Embedded in a Porous Medium with Application to Heat Transfer from a Dike
,”
J. Geophys. Res.
, Vol.
82
,
1977
, pp.
2040
2044
. https://doi.org/10.1029/JB082i014p02040
26.
Kuznetsov
,
A. V.
and
Nield
,
D. A.
, “
Natural Convective Boundary-Layer Flow of a Nanofluid past a Vertical Plate
,”
Int. J. Therm. Sci.
, Vol.
49
,
2010
, pp.
243
247
. https://doi.org/10.1016/j.ijthermalsci.2009.07.015
27.
Khan
,
W. A.
and
Pop
,
I.
, “
Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet
,”
Int. J. Heat Mass Transfer
, Vol.
53
,
2010
, pp.
2477
2483
. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
28.
Khan
,
W. A.
and
Aziz
,
A.
, “
Double-Diffusive Natural Convective Boundary Layer Flow in a Porous Medium Saturated with a Nanofluid over a Vertical Plate: Prescribed Surface Heat, Solute and Nanoparticle Fluxes
,”
Int. J. Therm. Sci.
, Vol.
50
,
2011
, pp.
2154
2160
. https://doi.org/10.1016/j.ijthermalsci.2011.05.022
29.
Kuznetsov
,
A. V.
and
Nield
,
D. A.
, “
Double-Diffusive Natural Convective Boundary-Layer Flow of a Nanofluid past a Vertical Plate
,”
Int. J. Therm. Sci.
, Vol.
50
,
2011
, pp.
712
717
. https://doi.org/10.1016/j.ijthermalsci.2011.01.003
30.
Nield
,
D. A.
and
Kuznetsov
,
A. V.
, “
The Cheng–Minkowycz Problem for the Double-Diffusive Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
, Vol.
53
,
2010
, pp.
2477
2483
. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
31.
Nield
,
D. A.
and
Kuznetsov
,
A. V.
, “
The Cheng–Minkowycz Problem for the Double-Diffusive Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
, Vol.
54
,
2011
, pp.
374
378
. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.034
This content is only available via PDF.
You do not currently have access to this content.