Abstract

This paper is a continuation of the authors’ previous work on the nucleate pool boiling heat transfer of nanofluids [Suriyawong, A. and Wongwises, S., “Nucleate pool boiling heat transfer characteristics of TiO2-water nanofluids at very low concentrations,” Exp. Therm. Fluid Sci., Vol. 34, No. 8, 2010, pp. 992–999.] This study presents new correlation for predicting heat transfer coefficient for nucleate pool boiling of TiO2-water nanofluids at several low concentrations. Unlike most previous studies, the proposed correlation consists of various relevant factors. Two horizontal circular plates made from copper and aluminum with different surface roughness values are used as heating surfaces. Because the calculation concerns with properties of nanofluids, this research uses various correlations from previous studies to find the properties of nanofluids and the best one is selected for the presentation. Compared with measured data of nucleate pool boiling of water and nanofluids from present and previous studies, it was found that the developed correlation could be used for prediction at a certain level.

References

1.
Li
,
C. H.
,
Wang
,
B. X.
, and
Peng
,
X. F.
, “
On the Pool Boiling of Subcooled Nano-Particle Suspensions
,”
Proceedings of 6th International Symposium on Heat Transfer
,
Beijing, China
, June 15–19, 2004, pp.
505
510
.
2.
Vassallo
,
P.
,
Kumar
,
R.
, and
Amico
,
S. D.
, “
Pool Boiling Heat Transfer Experiments in Silica–Water Nano-Fluids
,”
Int. J. Heat Mass Transfer
, Vol.
47
, No.
2
,
2004
, pp.
407
411
. https://doi.org/10.1016/S0017-9310(03)00361-2
3.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M.
, “
Experimental Study on CHF Characteristics of Water-TiO2 Nano-Fluids
,
Nucl. Eng. Tech.
, Vol.
38
, No.
1
,
2006
, pp.
61
68
.
4.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M.
, “
Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-Fluids
,”
Int. J. Heat Mass Transfer
, Vol.
49
, No.
25–26
,
2006
, pp.
5070
5074
. https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.019
5.
Golubovic
,
M. N.
,
Madhawa Hettiarachchi
,
H. D.
,
Worek
,
W. M.
, and
Minkowycz
,
W. J.
, “
Nanofluids and Critical Heat Flux, Experimental and Analytical Study
,”
Appl. Therm. Eng.
, Vol.
29
, No.
7
,
2009
, pp.
1281
1288
. https://doi.org/10.1016/j.applthermaleng.2008.05.005
6.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
, Vol.
83
, No.
16
,
2003
, pp.
3374
3376
. https://doi.org/10.1063/1.1619206
7.
Bang
,
I. C.
and
Chang
,
S. H.
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3-Water Nano-Fluids from a Plain Surface in a Pool
,
Int. J. Heat Mass Transfer
, Vol.
48
, No.
12
,
2005
, pp.
2407
2419
. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
8.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Uchida
,
S.
, and
Ohta
,
H.
, “
Effect of Surface Configuration on Nucleate Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
, Vol.
27
, No.
9
,
1984
, pp.
1559
1571
. https://doi.org/10.1016/0017-9310(84)90268-0
9.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
, Vol.
50
, No.
19–20
,
2007
, pp.
4105
4116
. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002
10.
Liu
,
Z.
,
Liao
,
L.
, “
Sorption and Agglutination Phenomenon of Nanofluids on a Plain Heating Surface During Pool Boiling
,”
Int. J. Heat Mass Transfer
, Vol.
51
, No.
9–10
,
2008
, pp.
2593
2602
. https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.050
11.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
, Vol.
46
, No.
5
,
2003
, pp.
851
862
. https://doi.org/10.1016/S0017-9310(02)00348-4
12.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
, “
Pool Boiling of Nano-Fluids on Horizontal Narrow Tube
,”
Int. J. Multiphase Flow
, Vol.
29
, No.
8
,
2003
, pp.
1237
1247
. https://doi.org/10.1016/S0301-9322(03)00105-8
13.
Trisaksri
,
V.
and
Wongwises
,
S.
,
Nucleate Pool Boiling Heat Transfer of TiO2–R141b Nanofluids
,”
Int. J. Heat Mass Transfer
, Vol.
52
, No.
5–6
,
2009
, pp.
1582
1588
. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.041
14.
Suriyawong
,
A.
,
Wongwises
,
S.
, “
Nucleate Pool Boiling Heat Transfer Characteristics of TiO2-Water Nanofluids at Very Low Concentrations
,”
Exp. Therm. Fluid Sci.
, Vol.
34
, No.
8
,
2010
, pp.
992
999
. https://doi.org/10.1016/j.expthermflusci.2010.03.002
15.
Whalley
,
P. B.
,
Boiling, Condensation, and Gas-Liquid Flow
, 1st ed.,
Oxford University Press
,
New York
,
1990
, pp.
131
133
.
16.
Rohsenow
,
W. M.
, “
A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids
,”
Trans. ASME
, Vol.
74
,
1952
, pp.
969
975
.
17.
Pak
,
B. C.
,
Cho
,
Y. I.
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
, Vol.
11
, No.
2
,
1998
, pp.
151
170
. https://doi.org/10.1080/08916159808946559
18.
Xuan
Y.
, and
Roetzel
,
W.
,
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
, Vol.
43
, No.
19
,
2000
, pp.
3701
3707
. https://doi.org/10.1016/S0017-9310(99)00369-5
19.
Wang
,
X.
,
Xu
,
X.
, and
Choi
,
S. U. S.
, “
Thermal Conductivity of Nanoparticles-Fluid Mixture
,”
J. Thermophys. Heat Transfer
, Vol.
13
, No.
4
,
1999
, pp.
474
480
. https://doi.org/10.2514/2.6486
20.
Drew
,
D. A.
and
Passman
,
S. L.
,
Theory of Multicomponent Fluids
,
Springer
,
Berlin
,
1999
, pp.
121
128
.
21.
Brinkman
,
H. C.
, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Chem. Phys.
, Vol.
20
, No.
4
,
1952
, pp.
571
581
. https://doi.org/10.1063/1.1700493
22.
Hamilton
,
R. L.
and
Crosser
,
O. K.
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
, Vol.
1
, No.
3
,
1962
, pp.
187
191
. https://doi.org/10.1021/i160003a005
23.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, “
Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids
,”
Int. J. Therm. Sci.
, Vol.
44
, No.
4
,
2005
, pp.
367
373
. https://doi.org/10.1016/j.ijthermalsci.2004.12.005
24.
Wasp
,
F. J.
,
Solid-Liquid Flow Slurry Pipeline Transportation
,
Trans Tech Publications
,
Clausthal
,
1977
.
25.
W.
Yu
and
Choi
,
S. U. S.
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,
J. Nanopart. Res.
, Vol.
5
, No.
4
,
2003
, pp.
167
171
. https://doi.org/10.1023/A:1024438603801
This content is only available via PDF.
You do not currently have access to this content.