Abstract

Corrosion fatigue-crack growth characteristics are important for the design of marine and off-shore structures. Design of critical components requires data on fatigue-crack growth rate at very low frequencies of the order of 10−2 to 10−3 Hz. Experiments at low frequencies pose practical difficulties of enormous test duration. To address this, it is proposed to estimate corrosion crack growth characteristics using a frequency shedding method where the frequency is shed with crack advance using an exponential law. Fatigue-crack growth rate tests have been conducted on Ni–Mn–Cr steel at a constant ΔK range of 18 MPa√m (lower Paris regime) under lab air conditions as well as 3.5 % NaCl solution. Crack growth rate data plotted as a function of test frequency presents a straight-line trend in log–log scale for a frequency range of 1–0.1 Hz; however, there is a change in trend when the frequencies are dropped further, which could be due to domination of corrosion mechanism. To understand the role of crack closure, crack closure estimates were obtained at periodic intervals of crack length and the effective stress intensity graphs suggest acceleration in crack growth rate due to corrosion as the frequency is reduced.

References

1.
Nikolin
,
E. S.
and
Karpenko
,
G. V.
, “
Effect of Stress Reversal Frequency on the Corrosion-Fatigue Strength of Notched Carbon Steel Specimens
,”
Mater. Sci.
, Vol.
2
,
1967
, pp.
128
129
. https://doi.org/10.1007/BF00716203
2.
McEvily
,
A. J.
and
Wei
,
R. P.
,
Corrosion Fatigue: Chemistry, Mechanics and Microstructure, NACE-2
,
National Association of Corrosion Engineers
,
Houston
,
1972
, pp.
381
395
.
3.
Menan
,
F.
and
Hénaff
,
G.
, “
Synergistic Action of Fatigue and Corrosion during Crack Growth in the 2024 Aluminum Alloy
,”
Proc. Eng.
, Vol.
2
,
2010
, pp.
1441
1450
. https://doi.org/10.1016/j.proeng.2010.03.156
4.
Sudarshan
,
T. S.
,
Srivatsan
,
T. S.
, and
Harvey
,
D. P.
, II
, “
Fatigue Processes in Metals—Role of Aqueous Environments
,”
Eng. Fract. Mech.
, Vol.
36
, No.
6
,
1990
, pp.
827
852
. https://doi.org/10.1016/0013-7944(90)90262-F
5.
Tkachev
,
V. I.
, “
Some Aspects of Hydrogen Embrittlement of Steels
,”
Mater. Sci.
, Vol.
15
,
1979
, pp.
31
35
. https://doi.org/10.1007/BF00728932
6.
Wei
,
R. P.
,
Fracture Mechanics—Integration of Mechanics, Material Science and Chemistry
,
Cambridge University Press
,
Cambridge
,
2010
.
7.
Ritchie
,
R. O.
, “
Mechanisms of Fatigue Crack Propagation in Metals, Ceramics and Composites: Role of Crack Tip Shielding
,”
Mater. Sci. Eng., A
, Vol.
103
, No.
1
,
1988
, pp.
15
28
. https://doi.org/10.1016/0025-5416(88)90547-2
8.
Bartlett
,
M. L.
and
Hudak
,
S. J.
, Jr.
, “
The Influence of Frequency-Dependent Crack Closure on Corrosion Fatigue Crack Growth
,” Fatigue’90, Honolulu, HI,
1990
, pp.
1783
1788
.
9.
Hudak
,
S. J.
, Jr.
and
Page
,
R. A.
, “
Analysis of Oxide Welding during Environment Assisted Crack Growth
,”
Corrosion
, Vol.
39
, No.
7
,
1983
, pp.
285
290
. https://doi.org/10.5006/1.3581914
10.
Pao
,
P. S.
,
Wei
,
W.
, and
Wei
,
R. P.
, “
Effect of Frequency on Fatigue Crack Growth Response of AISI 4340 Steel in Water Vapor
,”
Environment-Sensitive Fracture of Engineering Materials
,
Z. A.
Foroulis
, Ed.,
The Metallurgical Society of AIME
,
New York
,
1979
, pp.
565
580
.
11.
Moses
,
G. G.
and
Narasimha Rao
,
S.
, “
Behavior of Marine Clay Subjected to Cyclic Loading with Sustained Shear Stress
,”
Marine Geores. Geotechnol.
, Vol.
25
, No.
2
,
2007
, pp.
81
96
. https://doi.org/10.1080/10641190701334198
12.
En-Hou
,
H.
and
Ke
,
W.
, “
Chemical and Electrochemical Conditions within Corrosion Fatigue Cracks
,”
Corros. Sci.
, Vol.
35
,
1993
, pp.
599
610
. https://doi.org/10.1016/0010-938X(93)90194-L
13.
Taylor
,
M. E.
and
Barsom
,
J. M.
, “
Effect of Cyclic Frequency on the Corrosion-Fatigue Crack-Initiation Behavior of ASTM A517 Grade F Steel
,”
ASTM STP 743
,
ASTM International
,
West Conshohocken, PA
,
1981
, pp.
599
622
.
14.
Novak
,
S. R.
, “
Influence of Cyclic-Stress Frequency and Stress Ratio on the Corrosion-Fatigue Crack-Initiation Behavior of A588-A and A517-F Steels in Salt Water
,”
Fifteenth National Symposium on Fracture Mechanics
,
University of Maryland
,
College Park, MD
,
1982
.
15.
Barsom
,
J. M.
,
Sovak
,
J. F.
, and
Imhof
,
E. J.
, “
Corrosion-Fatigue Crack Propagation below KISCC in Four High-Yield-Strength Steels
,” Applied Research Laboratory Report 89.021-024(3), U.S. Steel Corporation, Arlington, VA,
1970
.
16.
Barsom
,
J. M.
, “
Corrosion-Fatigue Crack Propagation below KISCC
,”
Eng. Fract. Mech.
, Vol.
3
,
1971
, pp.
15
21
. https://doi.org/10.1016/0013-7944(71)90048-8
17.
Barsom
,
J. M.
, “
Effect of Cyclic-Stress Form on Corrosion Fatigue Crack Propagation below KISCC in a High-Yield-Strength Steel
,”
Corrosion Fatigue: Chemistry, Mechanics and Microstructure, NACE-2
,
National Association of Corrosion Engineers
,
Houston
,
1972
.
18.
Imhof
,
E. J.
and
Barsom
,
J. M.
, “
Fatigue and Corrosion-Fatigue Crack Growth of 4340 Steel at Various Yield Strengths
,”
ASTM STP 536
,
ASTM International
,
West Conshohocken, PA
,
1973
, pp.
182
205
.
19.
Vasudevan
,
A. K.
,
Sadananda
,
K.
, and
Louat
,
N.
, “
Two Critical Stress Intensities for Threshold Fatigue Crack Propagation
,”
Scripta Metall. Mater.
, Vol.
28
,
1993
, pp.
65
70
. https://doi.org/10.1016/0956-716X(93)90538-4
20.
Sadananda
,
K.
and
Vasudevan
,
A. K.
, “
Analysis of Fatigue Crack Closure and Thresholds
,”
ASTM STP 1220
,
ASTM International
,
West Conshohocken, PA
,
1995
, pp.
484
501
.
21.
Lee
,
E. U.
and
Vasudevan
,
A. K.
, “
Environmentally Influenced Fatigue in High Strength Steels
,”
J. ASTM Int.
, Vol.
2
,
2005
, pp.
151
163
. https://doi.org/10.1520/JAI12044
22.
Vasudevan
,
A. K.
and
Sadananda
,
K.
, “
Classification of Environmentally Assisted Fatigue Crack Growth Behavior
,”
Int. J. Fatigue
, Vol.
31
,
2009
, pp.
1696
1708
. https://doi.org/10.1016/j.ijfatigue.2009.03.019
23.
Buitrago
,
J.
,
Weir
,
M. S.
,
Kan
,
W. C.
,
Hudak
,
S. J.
, Jr.
, and
McMaster
,
F.
, “
Effect of Loading Frequency on Fatigue Performance of Risers in Sour Environment
,”
International Conference on Offshore Mechanics and Arctic Engineering, OMAE 2004-51641
, Vancouver,
2004
.
24.
Hudak
,
S. J.
, Jr.
,
Feiger
,
J. H.
, and
Patton
,
J. A.
, “
The Effect of Cyclic Loading Frequency on Corrosion-Fatigue Crack Growth in High-Strength Riser Materials
,”
International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2010-20705
, Shanghai,
2010
.
25.
ASTM E647
,
2010
, “
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,”
Annual Book of ASTM Standards
, Vol.
03.01
,
ASTM International
,
West Conshohocken, PA
, pp.
1
45
. https://doi.org/10.1520/E0647-11E01
26.
Park
,
H.-B.
,
Kim
,
K.-M.
, and
Lee
,
B.-W.
, “
Plastic Zone Size in Fatigue Cracking
,”
Int. J. Pressure Vessels Piping
, Vol.
68
,
1996
, pp.
279
285
. https://doi.org/10.1016/0308-0161(95)00066-6
27.
Chinnaiah
,
M.
and
Prakash
,
R. V.
, “
Corrosion Fatigue Crack Growth Studies in Ni–Cr–Mn Steel
,”
Int. J. Mech. Mater. Eng.
, Vol.
1
, No.
1
,
2010
, pp.
20
25
.
28.
Vosikovsky
,
O.
, “
Fatigue-Crack Growth in an X65 Line-Pipe Steel at Low Cyclic Frequencies in Aqueous Environments
,”
ASME J. Eng. Mater. Technol.
, Vol.
97
,
1975
, pp.
298
304
. https://doi.org/10.1115/1.3443302
29.
Dawson
,
D. B.
, “
Fatigue Crack Growth Behavior of Ti–6AI–6V–2Sn in Methanol and Methanol–Water Solutions
,”
Metall. Trans. A
, Vol.
12A
,
1981
, pp.
791
800
. https://doi.org/10.1007/BF02648343
This content is only available via PDF.
You do not currently have access to this content.