Abstract

Energy storage systems (ESSs), such as lithium-ion batteries, are being used today in renewable grid systems to provide the capacity, power, and quick response required for operation in grid applications, including peak shaving, frequency regulation, back-up power, and voltage support. Each application imposes a different duty cycle on the ESS. This represents the charge/discharge profile associated with energy generation and demand. Different duty cycle characteristics can have different effects on the performance, life, and duration of ESSs. Within lithium-ion batteries, various chemistries exist that own different features in terms of specific energy, power, and cycle life, that ultimately determine their usability and performance. Therefore, the characterization of duty cycles is a key to determine how to properly design lithium-ion battery systems for grid applications. Given the usage-dependent degradation trajectories, this research task is a critical step to study the unique aging behaviors of grid batteries. Significant energy and cost savings can be achieved by the optimal application of lithium-ion batteries for grid-energy storage, enabling greater utilization of renewable grid systems. In this paper, we propose an approach, based on unsupervised learning and frequency domain techniques, to characterize duty cycles for the grid-specific peak shaving applications. Finally, we propose synthetic duty cycles to mimic grid-battery dynamic behaviors for use in laboratory testing.

References

1.
IRENA
,
2020
, “
Renewable Capacity Highlights
,”
IRENA, Technical Report
.
2.
NREL
,
2020
, “
2018 Renewable Energy Grid Integration Data Book
,”
U.S. Department of Energy, Technical Report
, https://www.nrel.gov/docs/fy20osti/74823.pdf
3.
California ISO
,
2013
, “
What the Duck Curve Tells us About Managing a Green Grid
,”
California ISO, Technical Report
, https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf
4.
EIA
,
2018
, “
U.S. Battery Storage Market Trends: May 2018
,”
U.S. Energy Information Administration, Technical Report
.
5.
Lazard
,
2017
, “
Lazard’s Levelized Cost of Storage Analysis—version 3.0
,”
Lazard, Technical Report
.
6.
Chen
,
T.
,
Jin
,
Y.
,
Lv
,
H.
,
Yang
,
A.
,
Liu
,
M.
,
Chen
,
B.
,
Xie
,
Y.
, and
Chen
,
Q.
,
2020
, “
Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems
,”
Transactions of Tianjin University
,
26
, pp.
208
217
.
7.
Rocky Mountain Institute
,
2015
, “
The Economics of Battery Energy Storage
,”
Rocky Mountain Institute, Technical Report
, https://rmi.org/insight/economics-battery-energy-storage/
8.
Wankmüller
,
F.
,
Thimmapuram
,
P. R.
,
Gallagher
,
K. G.
, and
Botterud
,
A.
,
2017
, “
Impact of Battery Degradation on Energy Arbitrage Revenue of Grid-Level Energy Storage
,”
J. Energy Storage
,
10
, pp.
56
66
. 10.1016/j.est.2016.12.004
9.
Stan
,
A.
,
Świerczyński
,
M.
,
Stroe
,
D.
,
Teodorescu
,
R.
, and
Andreasen
,
S. J.
,
2014
, “
Lithium Ion Battery Chemistries From Renewable Energy Storage to Automotive and Back-up Power Applications—An Overview
,”
2014 International Conference on Optimization of Electrical and Electronic Equipment
, pp.
713
720
.
10.
Crawford
,
A. J.
,
Huang
,
Q.
,
Kintner-Meyer
,
M. C. W.
,
Zhang
,
J.-G.
,
Reed
,
D. M.
,
Sprenkle
,
V. L.
,
Viswanathan
,
V. V.
, and
Choi
,
D.
,
2018
, “
Lifecycle Comparison of Selected Li-ion Battery Chemistries Under Grid and Electric Vehicle Duty Cycle Combinations
,”
J. Power Sources
,
380
, pp.
185
193
. 10.1016/j.jpowsour.2018.01.080
11.
Spagnol
,
P.
,
Onori
,
S.
,
Madella
,
N.
,
Guezennec
,
Y.
, and
Neal
,
J.
,
2010
, “
Aging and Characterization of li-ion Batteries in a hev Application for Lifetime Estimation
,”
Proceedings of the IFAC Symposium Advances in Automotive Control
.
12.
Widanage
,
W.
,
Barai
,
A.
,
Chouchelamane
,
G. H.
,
Uddin
,
K.
,
McGordon
,
A.
,
Marco
,
J.
, and
Jennings
,
P.
,
2016
, “
Design and use of Multisine Signals for Li-ion Battery Equivalent Circuit Modelling. Part 1: Signal Design
,”
J. Power Sources
,
324
, pp.
70
78
. 10.1016/j.jpowsour.2016.05.015
13.
Liu
,
Z.
,
Onori
,
S.
, and
Ivanco
,
A.
,
2017
, “
Synthesis and Experimental Validation of Battery Aging Test Profiles Based on Real-World Duty Cycles for 48-V Mild Hybrid Vehicles
,”
IEEE Trans. Veh. Technol.
,
66
(
10
), pp.
8702
8709
. 10.1109/TVT.2017.2717187
14.
Mingant
,
R.
,
Bernard
,
J.
, and
Sauvant-Moynot
,
V.
,
2016
, “
Novel State-of-Health Diagnostic Method for Li-ion Battery in Service
,”
Appl. Energy
,
183
, pp.
390
398
. 10.1016/j.apenergy.2016.08.118
15.
Kellner
,
Q.
,
Worwood
,
D.
,
Barai
,
A.
,
Widanage
,
W. D.
, and
Marco
,
J.
,
2018
, “
Duty-cycle Characterisation of Large-Format Automotive Lithium ion Pouch Cells for High Performance Vehicle Applications
,”
J. Energy Storage
,
19
, pp.
170
184
. 10.1016/j.est.2018.07.018
16.
Zhu
,
R.
,
Duan
,
B.
,
Zhang
,
C.
, and
Gong
,
S.
,
2019
, “
Accurate Lithium-ion Battery Modeling With Inverse Repeat Binary Sequence for Electric Vehicle Applications
,”
Appl. Energy
,
251
, p.
113339
. 10.1016/j.apenergy.2019.113339
17.
Conover
,
D. R.
,
2016
, “
Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems
,” United States, https://www.osti.gov/servlets/purl/1249270, Accessed January 4, 2016.
18.
Schoenwald
,
D. A.
, and
Ellison
,
J.
,
2016
, “
Determination of Duty Cycle for Energy Storage Systems in a PV Smoothing Application
,” United States, https://www.osti.gov/servlets/purl/1331494
19.
Rosewater
,
D.
, and
Ferreira
,
S.
,
2016
, “
Development of a Frequency Regulation Duty-Cycle for Standardized Energy Storage Performance Testing
,” https://www.osti.gov/servlets/purl/1257783
20.
Stroe
,
D.
,
Knap
,
V.
,
Swierczynski
,
M.
,
Stroe
,
A.
, and
Teodorescu
,
R.
,
2017
, “
Operation of a Grid-Connected Lithium-Ion Battery Energy Storage System for Primary Frequency Regulation: A Battery Lifetime Perspective
,”
IEEE Trans. Ind. Appl.
,
53
(
1
), pp.
430
438
. 10.1109/ecce.2015.7309813
21.
Moy
,
K.
,
Lee
,
S. B.
, and
Onori
,
S.
, “
Characterization of Duty Cycles for the Peak Shaving Electric Grid Energy Storage Application
,”
Presented at the ASME 2020 Dynamic Systems and Control Conference
,
Pittsburgh, PA
,
Oct. 4–7, 2020
.
22.
Uddin
,
M.
,
Romlie
,
M. F.
,
Abdullah
,
M. F.
,
Abd Halim
,
S.
,
Abu Bakar
,
A. H.
, and
Chia Kwang
,
T.
,
2018
, “
A Review on Peak Load Shaving Strategies
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
3323
3332
. 10.1016/j.rser.2017.10.056
23.
End-User Bill Management
,
2013
, “Energy Storage Association, https://energystorage.org/end-user-bill-management/
24.
NREL
,
2017
, “
Identifying Potential Markets for Behind-the-Meter Battery Energy Storage: A Survey of U.S. Demand Charges
,” U.S. Department of Energy, Technical Report, https://www.nrel.gov/docs/fy17osti/68963.pdf
25.
Leadbetter
,
J.
, and
Swan
,
L.
,
2012
, “
Battery Storage System for Residential Electricity Peak Demand Shaving
,”
Energy Build.
,
55
, pp.
685
692
. 10.1016/j.enbuild.2012.09.035
26.
Cooley
,
J. W.
,
Lewis
,
P. A. W.
, and
Welch
,
P. D.
,
1969
, “
The Fast Fourier Transform and Its Applications
,”
IEEE Trans. Educ.
,
12
(
1
), pp.
27
34
. 10.1109/TE.1969.4320436
27.
Hyndman
,
R. J.
, and
Athanasopoulos
,
G.
,
2018
,
Forecasting: Principles and Practice
,
OTexts
:
Melbourne, Australia
.
28.
Lee
,
D.
, and
Baldick
,
R.
,
2012
, “
Analyzing the Variability of Wind Power Output Through the Power Spectral Density
,”
2012 IEEE Power and Energy Society General Meeting
.
29.
Welch
,
P.
,
1967
, “
The use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
. 10.1109/TAU.1967.1161901
30.
Sandia National Labs
,
1991
, “
PSD Computations Using Welch’s Method
,” U.S. Department of Energy, Technical Report, https://www.osti.gov/biblio/5688766/
31.
Ramadass
,
P.
,
Haran
,
B.
,
Gomadam
,
P. M.
,
White
,
R.
, and
Popov
,
B. N.
,
2004
, “
Development of First Principle Capacity Fade Model for Li-Ion Cells
,”
J. Electrochem. Soc.
,
151
(
2
), pp.
A196
A203
. 10.1149/1.1634273
32.
Liu
,
Q.
,
Du
,
C.
,
Shen
,
B.
,
Zuo
,
P.
,
Cheng
,
X.
,
Ma
,
Y.
,
Yin
,
G.
, and
Gao
,
Y.
,
2016
, “
Understanding Undesirable Anode Lithium Plating Issues in Lithium-ion Batteries
,”
RSC Adv.
,
6
(
91
), pp.
88683
88700
. 10.1039/C6RA19482F
33.
Yang
,
X. G.
,
Leng
,
Y.
,
Zhang
,
G.
,
Ge
,
S.
, and
Wang
,
C. Y.
,
2017
, “
Modeling of Lithium Plating Induced Aging of Lithium-ion Batteries: Transition From Linear to Nonlinear Aging
,”
J. Power Sources
,
360
, pp.
28
40
. 10.1016/j.jpowsour.2017.05.110
34.
Jain
,
A. K.
,
Murty
,
M. N.
, and
Flynn
,
P. J.
,
1999
, “
Data Clustering: a Review
,”
ACM Comput. Surv.
,
31
(
3
), pp.
264
323
. 10.1145/331499.331504
35.
Warren Liao
,
T.
,
2005
, “
Clustering of Time Series Data—a Survey
,”
Pattern Recognit.
,
38
(
11
), pp.
1857
1874
. 10.1016/j.patcog.2005.01.025
36.
Arthur
,
D.
, and
Vassilvitskii
,
S.
,
2007
, “
k-means++: the Advantages of Careful Seeding
,”
Presented at the Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
,
New Orleans, LA
.
37.
Xu
,
T.
, and
Zhang
,
N.
,
2017
, “
Coordinated Operation of Concentrated Solar Power and Wind Resources for the Provision of Energy and Reserve Services
,”
IEEE Trans. Power Syst.
,
32
(
2
), pp.
1260
1271
.
38.
Deeba
,
S. R.
,
Sharma
,
R.
,
Saha
,
T. K.
, and
Chakraborty
,
D.
,
2015
, “
A Tool to Estimate Maximum Arbitrage From Battery Energy Storage by Maintaining Voltage Limits in an LV Network
,”
IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)
, pp.
1
5
.
39.
Green
,
R.
,
Staffell
,
I.
, and
Vasilakos
,
N.
,
2014
, “
Divide and Conquer? k-Means Clustering of Demand Data Allows Rapid and Accurate Simulations of the British Electricity System
,”
IEEE Trans. Eng. Manage.
,
61
(
2
), pp.
251
260
. 10.1109/TEM.2013.2284386
40.
Rhodes
,
J. D.
,
Cole
,
W. J.
,
Upshaw
,
C. R.
,
Edgar
,
T. F.
, and
Webber
,
M. E.
,
2014
, “
Clustering Analysis of Residential Electricity Demand Profiles
,”
Appl. Energy
,
135
, pp.
461
471
. 10.1016/j.apenergy.2014.08.111
41.
Devie
,
A.
,
Montaru
,
M.
,
Pelissier
,
S.
, and
Venet
,
P.
,
2010
, “
Classification of Duty Pulses Affecting Energy Storage Systems in Vehicular Applications
,”
IEEE Vehicle Power and Propulsion Conference
, pp.
1
6
.
42.
Sandia National Labs
,
2018
, “
QuESt: An Energy Storage Evaluation Application Suite
,” U.S. Department of Energy, https://www.sandia.gov/ess-ssl/tools/quest/
43.
Smith
,
K.
,
Saxon
,
A.
,
Keyser
,
M.
,
Lundstrom
,
B.
,
Cao
,
Z.
, and
Roe
,
A.
,
2017
, “
Life Prediction Model for Grid-Connected Li-ion Battery Energy Storage System
,”
2017 American Control Conference (ACC)
.
44.
Reniers
,
J. M.
,
Mulder
,
G.
, and
Howey
,
D. A.
,
2019
, “
Review and Performance Comparison of Mechanical-Chemical Degradation Models for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
166
(
14
),
A3189
A3200
. 10.1149/2.0281914jes
You do not currently have access to this content.