Abstract

Burst suppression is a phenomenon in which the electroencephalogram (EEG) of a pharmacologically sedated patient alternates between higher frequency and amplitude bursting to lower frequency and amplitude suppression. The level of sedation can be quantified by the burst suppression ratio (BSR), which is defined as the amount of time that an EEG is suppressed over the amount of time measured. Maintaining a stable BSR in patients is an important clinical problem, which has led to an interest in the development of BSR-based closed-loop pharmacological control systems. Methods to address the problem typically involve pharmacokinetic (PK) modeling that describes the dynamics of drug infusion in the body as well as signal processing methods for estimating burst suppression from EEG measurements. In this regard, simulations, physiological modeling, and control design can play a key role in producing a solution. This paper seeks to add to prior work by incorporating a Schnider PK model with the Wilson–Cowan neural mass model to use as a basis for robust control design of biophysical burst suppression dynamics. We add to this framework actuator modeling, real-time burst suppression estimation, and uncertainty modeling in both the patient's physical characteristics and neurological phenomena to form a closed-loop system. Using the Ziegler–Nichols tuning method for proportional-integral-derivative (PID) control, we were able to control this system at multiple BSR set points over a simulation time of 18 h in both nominal, patient varied with noise added and with reduced performance due to BSR bounding when including patient variation and noise as well as neurological uncertainty.

References

1.
Brown
,
E. N.
,
Lydic
,
R.
, and
Schiff
,
N. D.
,
2010
, “
General Anesthesia, Sleep, and Coma
,”
N. Engl. J. Med.
,
363
(
27
), pp.
2638
2650
.
2.
Absalom
,
A. R.
,
Mani
,
V.
,
DeSmet
,
T.
, and
Struys
,
M. M.
,
2009
, “
Pharmacokinetic Models for Propofol—Defining and Illuminating the Devil in the Detail
,”
Br. J. Anaesth.
,
103
(
1
), pp.
26
37
.
3.
Young
,
G.
,
2000
, “
The EEG in Coma
,”
J. Clin. Neurophysiol.
,
17
(
5
), pp.
473
485
.
4.
Ching
,
S.
,
Purdon
,
P. L.
,
Vijayan
,
S.
,
Kopell
,
N. J.
, and
Brown
,
E. N.
,
2012
, “
A Neurophysiological-Metabolic Model for Burst Suppression
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
8
), pp.
3095
3100
.
5.
Martin
,
D.
,
Penrod
,
L.
,
Obrist
,
W.
,
Kochanek
,
P.
,
Palmer
,
A.
,
Wisniewski
,
S.
, and
DeKosky
,
S.
,
1997
, “
Treatment of Traumatic Brain Injury With Moderate Hypothermia
,”
N. Engl. J. Med.
,
336
(
8
), pp.
540
546
.
6.
Ching
,
S.
,
Liberman
,
M. Y.
,
Chemali
,
J. J.
,
Westover
,
B. M.
,
Kenny
,
J.
,
Solt
,
K.
, and
Brown
,
E. N.
,
2013
, “
Real-Time Closed-Loop Control in a Rodent Model of Medically-Induced Coma Using Burst Suppression
,”
Anesthesiology
,
119
(
4
), pp.
848
860
.
7.
Chemali
,
J.
,
Ching
,
S.
,
Purdon
,
P. L.
,
Solt
,
K.
, and
Brown
,
E. N.
,
2013
, “
Burst Suppression Probability Algorithms: State-Space Methods for Tracking EEG Burst Suppression
,”
J. Neural Eng.
,
10
(
5
), p.
056017
.
8.
Schanechi
,
M. M.
,
Chemali
,
J. J.
,
Liberman
,
M.
,
Solt
,
K.
, and
Brown
,
E. N.
,
2013
, “
A Brain–Machine Interface for Control of Medically-Induced Coma
,”
PLoS Comput. Biol.
,
10
(
5
), p.
056017
.
9.
Westover
,
B. M.
,
Kim
,
S.-E.
,
Ching
,
S.
,
Purdon
,
P. L.
, and
Brown
,
E. N.
,
2015
, “
Robust Control of Burst Suppression for Medical Coma
,”
J. Neural Eng.
,
12
(
4
), p.
046004
.
10.
Wilson
,
H.
, and
Cowan
,
J.
,
1972
, “
Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons
,”
Biophysics
,
12
(
1
), pp.
1
24
.
11.
Wilson
,
H.
, and
Cowan
,
J.
,
1973
, “
A Mathematical Theory of the Functional Dynamics of Cortical and Thalamic Nervous Tissue
,”
Kybernetik
,
15
(
2
), pp.
55
80
.
12.
Liu
,
S.
, and
Ching
,
S.
,
2017
, “
Homeostatic Dynamics, Hysteresis and Synchronization in a Low-Dimensional Model of Burst Suppression
,”
Math. Biol.
,
74
(
4
), pp.
1011
1035
.
13.
Schnider
,
T. W.
,
Minto
,
C. F.
,
Gambus
,
P. L.
,
Andresen
,
C.
,
Goodale
,
D. B.
,
Shafer
,
S. L.
, and
Youngs
,
E. J.
,
1998
, “
The Influence of Method of Administration and Covariates on the Pharmacokinetics of Propofol in Adult Volunteers
,”
Anesthesiology
,
88
(
5
), pp.
1170
1182
.
14.
Astrom
,
K. J.
, and
Hagglund
,
T.
,
1995
,
PID Controllers: Theory, Design, and Tuning
, 2nd ed.,
International Society for Measurement and Control
,
Research Triangle Park, NC
.
You do not currently have access to this content.