Abstract

This article discusses and analyzes the capabilities and limitations of a series of related controllers for Euler–Bernoulli beam vibration, and the powerful capabilities of a robust second-order sliding mode backstepping control method are exhibited. Motivated by the open-loop unstable response to harmonic excitations at resonant frequencies, specific attention is given to disturbances at system resonant frequencies. It is shown that the second-order sliding mode backstepping controller provides arbitrary exponential stability of the beam position where other similar controllers cannot. Furthermore, it is shown that other controllers exhibit large (relative to the disturbance) steady-state harmonic vibrations, or otherwise do not return the system to the origin. This article is an extension of the Dynamic Systems and Control Division Vibrations Technical Committee “Best Vibrations Paper Award”-winning conference paper (Karagiannis and Radisavlejevic-Gajic, 2017, “Robust Boundary Control for an Euler Bernoulli Beam Subject to Unknown Harmonic Disturbances With a Focus on Resonance”). The previous work is significantly extended to include an exponentially stabilizing, second-order sliding mode controller and discusses several boundary conditions.

References

1.
Karagiannis
,
D.
, and
Radisavlejevic-Gajic
,
V.
2017
, “
Robust Boundary Control for an Euler Bernoulli Beam Subject to Unknown Harmonic Disturbances With a Focus on Resonance
,”
Proceedings of the ASME 2017 Dynamic Systems and Control Conference
,
Tysons, VA
,
Oct. 11–13
, ASME, p. V003T32A009.
2.
Naguleswaran
,
S.
,
1994
, “
Lateral Vibration of a Centrifugally Tensioned Uniform Euler-Bernoulli Beam
,”
J. Sound. Vib.
,
176
(
5
), pp.
613
624
.
3.
Balas
,
M.
,
1978
, “
Feedback Control of Flexible Systems
,”
IEEE. Trans. Automat. Contr.
,
AC-23
(
4
), pp.
673
679
.
4.
Ataei
,
M. M.
,
Salarieh
,
H.
,
Pishkenari
,
H. N.
, and
Jalili
,
H.
,
2021
, “
Boundary Control Design Based on Partial Differential Equation Observer for Vibration Suppression and Attitude Control of Flexible Satellites With Multi-section Solar Panels
,”
J. Vib. Control
, p.
1077546321990158
.
5.
Michaltsos
,
G.
,
Sophianopoulos
,
D.
, and
Kounadis
,
A.
,
1996
, “
The Effect of a Moving Mass and Other Parameters on the Dynamic Response of a Simply Supported Beam
,”
J. Sound. Vib.
,
191
(
3
), pp.
357
362
.
6.
Sun
,
W.
, and
He
,
W.
,
2012
, “
Review of the Nonlinear Vibration Analysis of Simply Supported Beams
,”
Adv. Mater. Res.
,
446–449
, pp.
626
629
.
7.
Wang
,
Z.
,
Wu
,
W.
,
Gorges
,
D.
, and
Lou
,
X.
,
2022
, “
Sliding Mode Vibration Control of an Euler-Bernoulli Beam With Unknown External Disturbances
,”
Nonlinear Dyn.
,
110
, pp.
1393
1404
.
8.
Entessari
,
F.
,
Ardekany
,
A. N.
, and
Alasty
,
A.
,
2020
, “
Exponential Stabilization of Flexural Sway Vibration of Gantry Crane Via Boundary Control Method
,”
J. Vib. Control
,
26
(
1–2
), pp.
36
55
.
9.
Wu
,
J.
, and
Shang
,
Y.
,
2019
, “
Exponential Stability of the Euler-Bernoulli Beam Equation With External Disturbance and Output Feedback Time-Delay
,”
J. Syst. Sci. Complexity
,
32
, pp.
542
556
.
10.
Balas
,
M.
,
1978
, “
Active Control of Flexible Systems
,”
J. Optim. Theory Appl.
,
25
(
3
), pp.
415
436
.
11.
Krstic
,
M.
, and
Smyshlyaev
,
A.
,
2008
,
Boundary Control of PDEs: A Course on Backstepping Designs
(
Advances in Design and Control
),
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
12.
Li
,
S.
,
He
,
P.
, and
Lin
,
X.
,
2021
, “
Asymmetrical Barrier Function-Based Adaptive Vibration Control for Nonlinear Flexible Cantilever Beam With Obstacle Restriction
,”
IEEE Access
,
9
, pp.
58306
58318
.
13.
Jing
,
Z.
,
He
,
X.
,
Liu
,
Z.
,
Zhang
,
S.
, and
Kang
,
W.
,
2021
, “
Three-Dimensional Vibration Suppression for an Euler-Bernoulli Beam With Asymmetric Output Constraint
,”
J. Franklin Inst.
,
358
(
7
), pp.
3470
3490
.
14.
Wei
,
Q.
, and
Wang
,
L.
,
2021
, “
Exponential Stabilisation of Euler-Bernoulli Beam With Uncertain Disturbance
,”
Int. J. Control
,
94
(
6
), pp.
1622
1629
.
15.
Mei
,
Z.-D.
,
2020
, “
Dynamic Stabilisation for an Euler-Bernoulli Beam Equation With Boundary Control and Matched Nonlinear Disturbance
,”
Int. J. Control.
,
95
(
3
), pp.
626
640
.
16.
Ren
,
Y.
,
Zhu
,
P.
,
Zhao
,
Z.
,
Yang
,
J.
, and
Zou
,
T.
,
2021
, “
Adaptive Fault-Tolerant Boundary Control for a Flexible String With Unknown Dead Zone and Actuator Fault
,”
IEEE Trans. Cybernetics
,
52
(
7
), pp.
7084
7093
.
17.
Han
,
F.
, and
Jia
,
Y.
,
2020
, “
Sliding Mode Boundary Control for a Planar Two-Link Rigid-Flexible Manipulator With Input Disturbances
,”
Int. J. Control Autom. Syst.
,
18
(
2
), pp.
351
362
.
18.
Altiner
,
B.
,
Delibasi
,
A.
, and
Erol
,
B.
,
2019
, “
Modeling and Control of Flexible Link Manipulators for Unmodeled Dynamics Effect
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
233
(
3
), pp.
245
263
.
19.
He
,
W.
,
Tang
,
X.
,
Wang
,
T.
, and
Liu
,
Z.
,
2022
, “
Trajectory Tracking Control for a Three-Dimensional Flexible Wing
,”
IEEE Trans. Control Syst. Technol.
,
30
(
5
), pp.
2243
2250
.
20.
Basturk
,
H. I.
, and
Ayberk
,
I. U.
,
2019
, “
Backstepping Boundary Control of a Wave Pde With Spatially Distributed Time Invariant Unknown Disturbances
,”
IEEE. Trans. Automat. Contr.
,
64
(
8
), pp.
3469
3475
.
21.
Morawiec
,
M.
, and
Lewicki
,
A.
,
2021
, “
Speed Observer Structure of Induction Machine Based on Sliding Super-twisting and Backstepping Techniques
,”
IEEE Trans. Ind. Inf.
,
17
(
2
), pp.
1122
1131
.
22.
Karagiannis
,
D.
, and
Radisavljevic-Gajic
,
V.
,
2019
, “
A Backstepping Boundary Observer for a Simply Supported Beam
,”
IEEE. Trans. Automat. Contr.
,
64
(
9
), pp.
3809
3816
.
23.
Smyshlyaev
,
A.
,
Guo
,
B.-Z.
, and
Krstic
,
M.
,
2007
, “
Boundary Controllers for Euler-Bernoulli Beam With Arbitrary Decay Rate
,”
2007 46th IEEE Conference on Decision and Control
,
New Orleans, LA
,
Dec. 12–14
, pp.
4149
4154
.
24.
Smyshlyaev
,
A.
,
Guo
,
B.-Z.
, and
Krstic
,
M.
,
2009
, “
Arbitrary Decay Rate for Euler-Bernoulli Beam by Backstepping Boundary Feedback
,”
IEEE Trans. Automatic Control
,
54
(
5
), pp.
1134
1140
.
25.
Karagiannis
,
D.
, and
Radisavljevic-Gajic
,
V.
,
2018
, “
Sliding Mode Boundary Control for Vibration Suppression in a Pinned-Pinned Euler-Bernoulli Beam With Disturbances
,”
J. Vib. Control
,
24
(
6
), pp.
1109
1122
.
26.
Karagiannis
,
D.
, and
Radisavljevic-Gajic
,
V.
,
2018
, “
Sliding Mode Boundary Control of An Euler-Bernoulli Beam Subject to Disturbances
,”
IEEE. Trans. Automat. Contr.
,
63
(
10
), pp.
3442
3448
.
27.
Karagiannis
,
D.
, and
Radisavljevic-Gajic
,
V.
,
2019
, “
Exponential Stability for a Class of Boundary Conditions on a Euler-Bernoulli Beam Subject to Disturbances Via Boundary Control
,”
J. Sound Vib.
,
446
, pp.
387
411
.
28.
Rao
,
S. S.
,
2011
,
Mechanical Vibrations
,
Pearson
,
Upper Saddle River, NJ
.
29.
Tondl
,
A.
,
1973
, “
Notes on the Identification of Subharmonic Resonances of Rotors
,”
J. Sound. Vib.
,
31
(
1
), pp.
119
127
.
30.
Muszynska
,
A.
,
1986
, “
Whirl and Whip—Rotor/Bearing Stability Problems
,”
J. Sound. Vib.
,
110
(
3
), pp.
443
462
.
31.
Meirovitch
,
L.
,
2010
,
Fundamentals of Vibrations
,
Waveland Press Inc.
,
Long Grove, IL
.
You do not currently have access to this content.