Abstract

Increased automation has created an impetus to integrate infrastructure with wide-spread connectivity in order to improve e ciency, sustainability, autonomy, and security. Nonetheless, this reliance on connectivity and the inevitability of complexity in this system increase the vulnerabilities to physical faults or degradation and external cyber-threats. However, strategies to counteract faults and cyberattacks would be widely di erent and thus it is vital to not only detect but also to identify the nature of the anomaly that is present in these systems. In this work, we propose a mathematical framework to distinguish between physical faults and cyberattack using a sliding mode based unknown input observer. Finally, we present simulation case studies to distinguish between physical faults and cyberattacks using the proposed distinguishability metric and criterion. The simulation results show that the proposed framework successfully distinguishes between faults and cyberattacks.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
He
,
H.
, and
Yan
,
J.
,
2016
, “
Cyber-Physical Attacks and Defences in the Smart Grid: A Survey
,”
IET Cyber-Phys. Syst.: Theory Appl.
,
1
(
1
), pp.
13
27
.
2.
Zheng
,
P.
,
Sang
,
Z.
,
Zhong
,
R. Y.
,
Liu
,
Y.
,
Liu
,
C.
,
Mubarok
,
K.
,
Yu
,
S.
, and
Xu
,
X.
,
2018
, “
Smart Manufacturing Systems for Industry 4.0: Conceptual Framework, Scenarios, and Future Perspectives
,”
Front. Mech. Eng.
,
13
(
2
), pp.
137
150
.
3.
Rawat
,
D. B.
,
Bajracharya
,
C.
, and
Yan
,
G.
,
2015
, “
Towards Intelligent Transportation Cyber-Physical Systems: Real-Time Computing and Communications Perspectives
,”
SoutheastCon 2015
,
Fort Lauderdale, FL
,
Apr. 9–12
,
IEEE
, pp.
1
6
.
4.
Teixeira
,
A.
,
Shames
,
I.
,
Sandberg
,
H.
, and
Johansson
,
K. H.
,
2015
, “
A Secure Control Framework for Resource-Limited Adversaries
,”
Automatica
,
51
, pp.
135
148
.
5.
Safaeipour
,
H.
,
Forouzanfar
,
M.
, and
Casavola
,
A.
,
2021
, “
A Survey and Classi cation of Incipient Fault Diagnosis Approaches
,”
J. Process Control.
,
97
, pp.
1
16
.
6.
Rahman
,
M. S.
,
Pota
,
H. R.
, and
Hossain
,
M. J.
,
2014
,
Cyber Vulnerabilities on Agent-Based Smart Grid Protection System
,” 2014 IEEE PES General Meeting Conference & Exposition,
IEEE
, pp.
1
5
.
7.
Slay
,
J.
, and
Miller
,
M.
,
2007
, “
Lessons Learned From the Maroochy Water Breach
,” International Conference on Critical Infrastructure Protection,
Springer
, pp.
73
82
.
8.
Basile
,
C.
,
Gupta
,
M.
,
Kalbarczyk
,
Z.
, and
Iyer
,
R. K.
,
2006
, “
An Approach for Detecting and Distinguishing Errors Versus Attacks in Sensor Networks
,” International Conference on Dependable Systems and Networks (DSN'06),
IEEE
, pp.
473
484
.
9.
Li
,
Y.
,
Fang
,
H.
, and
Chen
,
J.
,
2019
, “
Anomaly Detection and Identi cation for Multiagent Systems Subjected to Physical Faults and Cyber Attacks
,”
IEEE Trans. Ind. Electron.
,
67
(
11
), pp.
9724
9733
.
10.
Rahman
,
M. S.
,
Mahmud
,
M. A.
,
Oo
,
A. M. T.
, and
Pota
,
H. R.
,
2016
, “
Multi-agent Approach for Enhancing Security of Protection Schemes in Cyber-Physical Energy Systems
,”
IEEE Trans. Ind. Inform.
,
13
(
2
), pp.
436
447
.
11.
Patil
,
A.
,
Kamuni
,
V.
,
Sheikh
,
A.
,
Wagh
,
S.
, and
Singh
,
N.
,
2019
, “
A Machine Learning Approach to Distinguish Faults and Cyberattacks in Smart Buildings
,”
2019 9th International Conference on Power and Energy Systems (ICPES)
,
Perth, Australia
,
Dec. 10–12
,
IEEE
, pp.
1
6
.
12.
Farajzadeh-Zanjani
,
M.
,
Hallaji
,
E.
,
Razavi-Far
,
R.
,
Saif
,
M.
, and
Parvania
,
M.
,
2021
, “
Adversarial Semi-Supervised Learning for Diagnosing Faults and Attacks in Power Grids
,”
IEEE Trans. Smart Grid
,
12
(
4
), pp.
3468
3478
.
13.
Anwar
,
A.
,
Mahmood
,
A. N.
, and
Shah
,
Z.
,
2015
, “
A Data-Driven Approach to Distinguish Cyber-Attacks From Physical Faults in a Smart Grid
,”
Proceedings of the 24th ACM International on Conference on Information and Knowledge Management
,
Melbourne Australia
,
Oct. 18–23
, pp.
1811
1814
.
14.
Tertytchny
,
G.
,
Nicolaou
,
N.
, and
Michael
,
M. K.
,
2020
, “
Classifying Network Abnormalities Into Faults and Attacks in IoT-Based Cyber Physical Systems Using Machine Learning
,”
Microprocess. Microsyst.
,
77
, p.
103121
.
15.
Bernieri
,
G.
,
Miciolino
,
E. E.
,
Pascucci
,
F.
, and
Setola
,
R.
,
2017
, “
Monitoring System Reaction in Cyber-Physical Testbed Under Cyber-Attacks
,”
Comput. Electr. Eng.
,
59
, pp.
86
98
.
16.
Chen
,
J.
, and
Patton
,
R. J.
,
2012
,
Robust Model-Based Fault Diagnosis for Dynamic Systems
, Vol.
3
,
Springer Science & Business Media
,
Berlin, Germany
.
17.
Zhu
,
Q.
,
Rieger
,
C.
, and
Başar
,
T.
,
2011
, “
A Hierarchical Security Architecture for Cyber-Physical Systems
,”
2011 4th International Symposium on Resilient Control Systems
,
Boise, ID
,
Aug. 9–11
,
IEEE
, pp.
15
20
.
18.
Sprea co
,
C.
,
Russo
,
D.
, and
Rizzi
,
C.
,
2017
, “
A State-of-the-Art Review of FMEA/FMECA Including Patents
,”
Comput. Sci. Rev.
,
25
, pp.
19
28
.
19.
Edwards
,
C.
,
Spurgeon
,
S. K.
, and
Patton
,
R. J.
,
2000
, “
Sliding Mode Observers for Fault Detection and Isolation
,”
Automatica
,
36
(
4
), pp.
541
553
.
20.
Utkin
,
V.
,
Guldner
,
J.
, and
Shi
,
J.
,
2017
,
Sliding Mode Control in Electro-Mechanical Systems
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.