Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This work brings forward several interesting facts about system properties of linear time-invariant discrete-time systems like output controllability, state controllability and state observability, trackability, and input and state observability. Particularly, the work brings about the inter-relationships between these properties while taking a state-space formulation-based approach to come up with simple facts that are backed up by proofs using preliminary linear algebra.

References

1.
Palanthandalam-Madapusi
,
H. J.
, and
Bernstein
,
D. S.
,
2007
, “
Unbiased Minimum-Variance Filtering for Input Reconstruction
,”
American Control Conference
,
New York City
,
July 11–13
, IEEE, pp.
5712
5717
.
2.
Kadam
,
S. D.
, and
Palanthandalam-Madapusi
,
H. J.
,
2022
, “
Trackability for Discrete-Time Linear Time-Invariant Systems: a Brief Review and New Insights
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
3
), p.
031007
.
3.
Kadam
,
S. D.
, and
Palanthandalam-Madapusi
,
H. J.
,
2017
, “
Revisiting Trackability for Linear Time-Invariant Systems
,”
American Control Conference
,
Seattle, WA
,
May 24–26
, IEEE, pp.
1728
1733
.
4.
Sain
,
M.
, and
Massey
,
J.
,
1969
, “
Invertibility of Linear Time-Invariant Dynamical Systems
,”
IEEE Trans. Autom. Contr.
,
14
(
2
), pp.
141
149
.
5.
Dorato
,
P.
,
1969
, “
On the Inverse of Linear Dynamical Systems
,”
IEEE Trans. Syst. Sci. Cybernet.
,
5
(
1
), pp.
43
48
.
6.
Zou
,
Q.
, and
Devasia
,
S.
,
1999
, “
Preview-Based Stable-Inversion for Output Tracking of Linear Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
4
), pp.
625
630
.
7.
Nijmeijer
,
H.
,
1986
, “
Right-Invertibility for a Class of Nonlinear Control Systems: A Geometric Approach
,”
Syst. Control Lett.
,
7
(
2
), pp.
125
132
.
8.
Marro
,
G.
,
Prattichizzo
,
D.
, and
Zattoni
,
E.
,
2002
, “
Convolution Profiles for Right Inversion of Multivariable Non-minimum Phase Discrete-Time Systems
,”
Automatica
,
38
(
10
), pp.
1695
1703
.
9.
Hou
,
M.
, and
Patton
,
R. J.
,
1998
, “
Input Observability and Input Reconstruction
,”
Automatica
,
34
(
6
), pp.
789
794
.
10.
Estrada
,
M. B.
,
Garcia
,
M. F.
,
Malabre
,
M.
, and
García
,
J. C. M.
,
2007
, “
Left Invertibility and Duality for Linear Systems
,”
Linear Algebra Appl.
,
425
(
2–3
), pp.
345
373
.
11.
Kadam
,
S. D.
,
Chavan
,
R. A.
,
Rajiv
,
A.
, and
Palanthandalam-Madapusi
,
H. J.
,
2019
, “
A Perspective on Using Input Reconstruction for Command Following
,”
Circuits, Syst. Signal Process.
,
38
(
12
), pp.
5920
5930
.
12.
Kadam
,
S. D.
,
Rao
,
A.
,
Prusty
,
B.
, and
Palanthandalam-Madapusi
,
H. J.
,
2020
, “
Selective Tracking Using Linear Trackability Analysis and Inversion-Based Tracking Control
,”
American Control Conference
,
Denver, CO
,
July 1–3
, IEEE, pp.
5346
5351
.
13.
Kadam
,
S. D.
, and
Palanthandalam-Madapusi
,
H. J.
,
2022
, “
A Note on Invertibility and Relative Degree of Mimo LTI Systems
,”
IFAC J. Syst. Control
,
20
, p.
100193
.
14.
Palanthandalam-Madapusi
,
H. J.
, and
Bernstein
,
D. S.
,
2009
, “
A Subspace Algorithm for Simultaneous Identification and Input Reconstruction
,”
Int. J. Adapt. Control Signal Process.
,
23
(
12
), pp.
1053
1069
.
15.
Fadali
,
M. S.
, and
Visioli
,
A.
,
2012
,
Digital Control Engineering: Analysis and Design
,
Academic Press
,
Burlington, MA
, p.
301
.
You do not currently have access to this content.