Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

It is well known that real nonminimum phase (RNMP) zeros impose a tradeoff between the settling time and undershoot in the step response of flexible systems. Existing methods to alleviate this tradeoff predominantly rely on various advanced control strategies without delving into a broader mechatronic approach that combines physical system and control system design. To address this gap, this article proposes a proportional viscous damping-based physical system design in combination with feedback control and prefilter design. First, the effect of proportional viscous damping on RNMP zeros of flexible systems is established to propose a damping strategy that pushes all the RNMP zeros further away from the imaginary axis. Then, a step-by-step mechatronic system design process is presented to apply this damping strategy along with a full-state feedback control strategy and prefilter to a multi-degree-of-freedom (DoF) flexible system. The application of this design process yields simultaneous improvement in the settling time and undershoot in the step response of this flexible system.

References

1.
Isaacs
,
M. W.
,
Hoagg
,
J. B.
,
Morozov
,
A. V.
, and
Bernstein
,
D. S.
,
2011
, “
A Numerical Study on Controlling a Nonlinear Multilink Arm Using a Retrospective Cost Model Reference Adaptive Controller
,”
2011 50th IEEE Conference on Decision and Control and European Control Conference
,
Orlando, FL
,
Dec. 12
, IEEE, pp.
8008
8013
.
2.
Morozov
,
A. V.
,
Hoagg
,
J. B.
, and
Bernstein
,
D. S.
,
2010
, “
Retrospective Cost Adaptive Control of a Planar Multilink Arm With Nonminimum-Phase Zeros
,”
49th IEEE Conference on Decision and Control (CDC)
,
Atlanta, GA
,
Dec. 15
, IEEE, pp.
3706
3711
.
3.
Lee
,
Y. J.
, and
Speyer
,
J. L.
,
1993
, “
Zero Locus of a Beam With Varying Sensor and Actuator Locations
,”
J. Guid. Control Dyn.
,
16
(
1
), pp.
21
25
.
4.
Spector
,
V. A.
, and
Flashner
,
H.
,
1989
, “
Sensitivity of Structural Models for Noncollocated Control Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
111
(
4
), pp.
646
655
.
5.
Kamaldar
,
M.
,
Islam
,
S. A. U.
,
Hoagg
,
J. B.
, and
Bernstein
,
D. S.
,
2022
, “
Demystifying Enigmatic Undershoot in Setpoint Command Following [Focus on Education]
,”
IEEE Control Syst. Mag.
,
42
(
1
), pp.
103
125
.
6.
Middleton
,
R. H.
,
1991
, “
Trade-Offs in Linear Control System Design
,”
Automatica
,
27
(
2
), pp.
281
292
.
7.
Lau
,
K.
,
Middleton
,
R. H.
, and
Braslavsky
,
J. H.
,
2003
, “
Undershoot and Settling Time Tradeoffs for Nonminimum Phase Systems
,”
IEEE Trans. Automat. Contr.
,
48
(
8
), pp.
1389
1393
.
8.
Butterworth
,
J. A.
,
Pao
,
L. Y.
, and
Abramovitch
,
D. Y.
,
2008
, “
The Effect of Nonminimum-Phase Zero Locations on the Performance of Feedforward Model-Inverse Control Techniques in Discrete-Time Systems
,”
2008 American Control Conference
,
Seattle, WA
,
Aug. 5
, pp.
2696
2702
.
9.
Merrikh-Bayat
,
F.
,
2013
, “
Fractional-Order Unstable Pole-Zero Cancellation in Linear Feedback Systems
,”
J. Process Control
,
23
(
6
), pp.
817
825
.
10.
Torfs
,
D.
,
De Schutter
,
J.
, and
Swevers
,
J.
,
1992
, “
Extended Bandwidth Zero Phase Error Tracking Control of Nonminimal Phase Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
114
(
3
), pp.
347
351
.
11.
Gross
,
E.
, and
Tomizuka
,
M.
,
1994
, “
Experimental Flexible Beam Tip Tracking Control With a Truncated Series Approximation to Uncancelable Inverse Dynamics
,”
IEEE Trans. Control Syst. Technol.
,
2
(
4
), pp.
382
391
.
12.
Ramani
,
K. S.
,
Duan
,
M.
,
Okwudire
,
C. E.
, and
Galip Ulsoy
,
A.
,
2016
, “
Tracking Control of Linear Time-Invariant Nonminimum Phase Systems Using Filtered Basis Functions
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
1
), p.
011001
.
13.
Wang
,
H.
,
Kim
,
K.
, and
Zou
,
Q.
,
2013
, “
B-Spline-Decomposition-Based Output Tracking With Preview for Nonminimum-Phase Linear Systems
,”
Automatica
,
49
(
5
), pp.
1295
1303
.
14.
Rigney
,
B. P.
,
Pao
,
L. Y.
, and
Lawrence
,
D. A.
,
2009
, “
Nonminimum Phase Dynamic Inversion for Settle Time Applications
,”
IEEE Trans. Control Syst. Technol.
,
17
(
5
), pp.
989
1005
.
15.
Zhao
,
S.
,
Xue
,
W.
, and
Gao
,
Z.
,
2013
, “
Achieving Minimum Settling Time Subject to Undershoot Constraint in Systems With One or Two Real Right Half Plane Zeros
,”
ASME J. Dyn. Syst. Meas. Control
,
135
(
3
), p.
034505
.
16.
Sun
,
L.
,
Li
,
D.
,
Gao
,
Z.
,
Yang
,
Z.
, and
Zhao
,
S.
,
2016
, “
Combined Feedforward and Model-Assisted Active Disturbance Rejection Control for Non-Minimum Phase System
,”
ISA Trans.
,
64
(
1
), pp.
24
33
.
17.
Spector
,
V. A.
, and
Flashner
,
H.
,
1990
, “
Modeling and Design Implications of Noncollocated Control in Flexible Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
2
), pp.
186
193
.
18.
Awtar
,
S.
, and
Slocum
,
A. H.
,
2006
, “
Constraint-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
(
8
), pp.
816
830
.
19.
Roy
,
N. K.
, and
Cullinan
,
M. A.
,
2018
, “
Design and Characterization of a Two-Axis, Flexure-Based Nanopositioning Stage With 50 mm Travel and Reduced Higher Order Modes
,”
Precis. Eng.
,
53
(
1
), pp.
236
247
.
20.
Vakil
,
M.
,
Fotouhi
,
R.
, and
Nikiforuk
,
P.
,
2010
, “
On the Zeros of the Transfer Function of Flexible Link Manipulators and Their Non-Minimum Phase Behaviour
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
224
(
10
), pp.
2083
2096
.
21.
Cannon
,
R. H.
, and
Schmitz
,
E.
,
1984
, “
Initial Experiments on the End-Point Control of a Flexible One-Link Robot
,”
Int. J. Rob. Res.
,
3
(
3
), pp.
62
75
.
22.
Pierson
,
H.
,
Brevick
,
J.
, and
Hubbard
,
K.
,
2013
, “
The Effect of Discrete Viscous Damping on the Transverse Vibration of Beams
,”
J. Sound Vib.
,
332
(
18
), pp.
4045
4053
.
23.
Greene
,
M.
,
1987
, “
Robustness of Active Modal Damping of Large Flexible Structures
,”
Int. J. Control
,
46
(
3
), pp.
1009
1018
.
24.
Lin
,
J. L.
,
1999
, “
On Transmission Zeros of Mass-Dashpot-Spring Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
121
(
2
), pp.
179
183
.
25.
Rath
,
S.
, and
Awtar
,
S.
,
2021
, “
Non-minimum Phase Zeros of Two-DoF Damped Flexible Systems
,”
Modelling, Estimation and Control Conference
,
Austin, TX
,
Oct. 24–27
, Vol. 54, No. 20, pp.
579
585
.
26.
Rath
,
S.
, and
Awtar
,
S.
,
2023
, “
On the Zeros of Three-DoF Damped Flexible Systems
,”
J. Sound Vib.
,
560
(
1
), p.
117698
.
27.
Rath
,
S.
,
2024
, “
On Zeros of Flexible Systems
,”
Ph.D. dissertation
,
University of Michigan
,
Ann Arbor, MI
.
28.
Rath
,
S.
,
Cui
,
L.
, and
Awtar
,
S.
,
2021
, “
On the Zeros of an Undamped Three-DOF Flexible System
,”
ASME Lett. Dyn. Syst. Contr.
,
1
(
4
), p.
041010
.
You do not currently have access to this content.