Abstract
Integration of inverter-based resources (IBRs) which lack the intrinsic characteristics such as the inertial response of the traditional synchronous-generator (SG)-based sources presents a new challenge in the form of analyzing the grid stability under their presence. While the dynamic composition of IBRs differs from that of the SGs, the control objective remains similar in terms of tracking the desired active power. This letter presents a decentralized primal-dual-based fault-tolerant control framework for the power allocation in IBRs. Overall, a hierarchical control algorithm is developed with a lower level addressing the current control and the parameter estimation for the IBRs and the higher level acting as the reference power generator to the low level based on the desired active power profile. The decentralized network-based algorithm adaptively splits the desired power between the IBRs taking into consideration the health of the IBRs transmission lines. The proposed framework is tested through a simulation on the network of IBRs and the high-level controller performance is compared against the existing framework in the literature. The proposed algorithm shows significant performance improvement in the magnitude of power deviation and settling time to the nominal value under faulty conditions as compared to the algorithm in the literature.