Abstract

This article proposes a neural network hybrid modeling framework for dynamics learning to promote an interpretable, computationally efficient method of dynamics learning and system identification. First, a low-level model is trained to learn the system dynamics, which utilizes multiple simple neural networks to approximate the local dynamics generated from data-driven partitions. Then, based on the low-level model, a high-level model is trained to abstract the low-level neural hybrid system model into a transition system that allows computational tree logic (CTL) verification to promote model’s ability to handle human interaction and verification efficiency.

References

1.
Wang
,
Y.
,
Wang
,
W.
,
Chen
,
Q.
,
Huang
,
K.
,
Nguyen
,
A.
,
De
,
S.
, and
Hussain
,
A.
,
2023
, “
Fusing External Knowledge Resources for Natural Language Understanding Techniques: A Survey
,”
Inf. Fusion
,
92
, pp.
190
204
.
2.
Stefenon
,
S. F.
,
Corso
,
M. P.
,
Nied
,
A.
,
Perez
,
F. L.
,
Yow
,
K. -C.
,
Gonzalez
,
G. V.
, and
Leithardt
,
V. R. Q.
,
2022
, “
Classification of Insulators Using Neural Network Based on Computer Vision
,”
IET Generation, Transm. Distrib.
,
16
(
6
), pp.
1096
1107
.
3.
Zhang
,
X.
,
Zheng
,
X.
, and
Mao
,
W.
,
2021
, “
Adversarial Perturbation Defense on Deep Neural Networks
,”
ACM Comput. Surv. (CSUR)
,
54
(
8
), pp.
1
36
.
4.
Yang
,
Y.
,
Wang
,
T.
,
Woolard
,
J. P.
, and
Xiang
,
W.
,
2022
, “
Guaranteed Approximation Error Estimation of Neural Networks and Model Modification
,”
Neural Netw.
,
151
, pp.
61
69
.
5.
Brix
,
C.
,
Müller
,
M. N.
,
Bak
,
S.
,
Johnson
,
T. T.
, and
Liu
,
C.
,
2023
, “
First Three Years of the International Verification of Neural Networks Competition (VNN-COMP)
,”
Int. J. Softw. Tools Technol. Transf.
,
25
(
3
), pp.
1
11
.
6.
Wang
,
T.
,
Yang
,
Y.
, and
Xiang
,
W.
,
2023
, “
Computationally Efficient Neural Hybrid Automaton Framework for Learning Complex Dynamics
,”
Neurocomputing
,
562
, p.
126879
.
7.
Xiang
,
W.
,
Tran
,
H.-D.
, and
Johnson
,
T. T.
,
2018
, “
Output Reachable Set Estimation and Verification for Multilayer Neural Networks
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
29
(
11
), pp.
5777
5783
.
8.
Wang
,
S.
,
Zhang
,
H.
,
Xu
,
K.
,
Lin
,
X.
,
Jana
,
S.
,
Hsieh
,
C.-J.
, and
Kolter
,
J. Z.
,
2021
, “
Beta-CROWN: Efficient Bound Propagation With Per-Neuron Split Constraints for Neural Network Robustness Verification
,”
Adv. Neural Inf. Process. Syst.
,
34
, pp.
29909
29921
.
9.
Tran
,
H.-D.
,
Musau
,
P.
,
Lopez
,
D. M.
,
Yang
,
X.
,
Nguyen
,
L. V.
,
Xiang
,
W.
, and
Johnson
,
T. T.
,
2019
, “
Parallelizable Reachability Analysis Algorithms for Feed-forward Neural Networks
,”
IEEE/ACM 7th International Conference on Formal Methods in Software Engineering (FormaliSE)
,
Montreal, QC, Canada
,
May 27
, IEEE, pp.
51
60
.
10.
Feng
,
R.
,
Leung
,
C.-S.
, and
Sum
,
J.
,
2018
, “
Robustness Analysis on Dual Neural Network-Based k WTA With Input Noise
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
29
(
4
), pp.
1082
1094
.
11.
Lopez
,
D. M.
,
Choi
,
S. W.
,
Tran
,
H. -D.
, and
Johnson
,
T. T.
,
2023
, “
NNV 2.0: The Neural Network Verification Tool
,”
International Conference on Computer Aided Verification (CAV)
,
Paris, France
,
July 17–22
, Springer, pp.
397
412
.
12.
Vincent
,
J. A.
, and
Schwager
,
M.
,
2021
, “
Reachable Polyhedral Marching (RPM): A Safety Verification Algorithm for Robotic Systems With Deep Neural Network Components
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May 30–June 5
, IEEE, pp.
9029
9035
.
13.
Yang
,
Y.
, and
Xiang
,
W.
,
2023
, “
Modeling Dynamical Systems With Neural Hybrid System Framework via Maximum Entropy Approach
,”
2023 American Control Conference (ACC)
,
San Diego, CA
,
May 31–June 2
, pp.
3907
3912
.
14.
Reinhart
,
R. F.
, and
Steil
,
J. J.
,
2011
, “
Neural Learning and Dynamical Selection of Redundant Solutions for Inverse Kinematic Control
,”
11th IEEE-RAS International Conference on Humanoid Robots
,
Bled, Slovenia
,
Oct. 26–28
, IEEE, pp.
564
569
.
15.
Kanazawa
,
A.
,
Zhang
,
J. Y.
,
Felsen
,
P.
, and
Malik
,
J.
,
2019
, “
Learning 3D Human Dynamics From Video
,”
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Long Beach, CA
,
June 15–20
, pp.
5614
5623
.
16.
Khansari-Zadeh
,
S. M.
, and
Billard
,
A.
,
2011
, “
Learning Stable Nonlinear Dynamical Systems With Gaussian Mixture Models
,”
IEEE Trans. Rob.
,
27
(
5
), pp.
943
957
.
17.
Pan
,
H.
,
Li
,
Y.
,
Cao
,
Y.
, and
Ma
,
Z.
,
2016
, “
Model Checking Computation Tree Logic Over Finite Lattices
,”
Theor. Comput. Sci.
,
612
, pp.
45
62
.
18.
Hajdu
,
Á.
, and
Micskei
,
Z.
,
2020
, “
Efficient Strategies for CEGAR-Based Model Checking
,”
J. Autom. Reason.
,
64
(
6
), pp.
1051
1091
.
You do not currently have access to this content.