Abstract

A simple algorithm is presented to find near-minimum-time control inputs for a controllable continuous-time linear time-invariant system with any number of states and inputs. The well-known digital deadbeat control algorithm is modified to satisfy input constraints, and the design issue is the selection of sampling period to minimize the time required to reach the desired final state. During each sampling period, the input required to place all the poles at the origin of z-plane (deadbeat control) via state feedback is computed. If the infinity norm of the deadbeat input exceeds the input constraint, the input is found by placing the poles as close to the origin as possible. A sufficient condition for the system stability is developed. Numerical examples illustrate that this algorithm can lead to true time-optimal control or near time-optimal control.

References

1.
Athans
,
M.
, and
Falb
,
P. L.
,
2007
,
Optimal Control: An Introduction to the Theory and Its Applications
,
Dover Publications, Inc.
,
Mineola, NY
, Originally Published in 1966 by McGraw Hill, Inc.
2.
Chung
,
T.-S.
, and
Wu
,
C.-J.
,
1992
, “
A Computationally Efficient Numerical Algorithm for the Minimum-Time Control Problem of Continuous Systems
,”
Automatica
,
28
(
4
), pp.
841
847
.
3.
Pao
,
L. Y.
,
1996
, “
Minimum-Time Control Characteristics of Flexible Structures
,”
AIAA J. Guidance, Contr. Dyn.
,
19
(
1
), pp.
123
129
.
4.
Pao
,
L. Y.
, and
Franklin
,
G. F.
,
1993
, “
Proximate Time-Optimal Control of Third-Order Servomechanisms
,”
IEEE Trans. Automat. Contr.
,
38
(
4
), pp.
560
580
.
5.
Malek-Zavarei
,
M.
,
1980
, “
Time-Optimal Control of a Class of Third-Order Plants
,”
J. Franklin Inst.
,
309
(
3
), pp.
125
134
.
6.
Kailath
,
T.
,
1980
,
Linear Systems
,
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
.
7.
Astrom
,
K. J.
, and
Wittenmark
,
B.
,
1997
,
Computer-Controlled Systems: Theory and Design
,
Prentice-Hall
,
Upper Saddle River, NJ
.
8.
Ichikawa
,
K.
,
1978
, “
Discrete-Time Fast Regulator With Fast Observer
,”
Int. J. Control
,
28
(
5
), pp.
733
742
.
9.
Desoer
,
C. A.
, and
Wing
,
J.
,
1961
, “
A Minimal Time Discrete System
,”
IRE Trans. Automat. Contr.
,
6
(
2
), pp.
111
125
.
10.
Keerthi
,
S. S.
, and
Gilbert
,
E. G.
,
1987
, “
Computation of Minimum-Time Feedback Control Laws for Discrete-Time Systems With State-Control Constraints
,”
IEEE Trans. Automat. Contr.
,
AC-32
(
5
), pp.
432
435
.
11.
Sinha
,
A.
, and
Peng
,
H.
,
1992
, “
Near-Minimum-Time Control of a Flexible Robot Arm via Linear Programming
,”
Int. J. Robot. Autom.
,
7
(
4
), pp.
152
160
.
12.
Zanasi
,
R.
, and
Morselli
,
R.
,
2003
, “
Discrete Minimum Time Tracking Problem for a Chain of Three Integrators With Bounded Input
,”
Automatica
,
39
(
9
), pp.
1643
1649
.
13.
Gao
,
Z.
,
2004
, “
On Discrete Time Optimal Control: A Closed-Form Solution
,”
Proceeding of the 2004 American Control Conference
,
Boston, MA
,
June 30–July 2
, pp.
52
58
.
14.
Chen
,
D.
,
Bako
,
L.
, and
Lecoeuche
,
S.
,
2012
, “
The Minimum-Time Problem for Linear Discrete-Time Linear Systems: A Non-Smooth Optimization Approach
,”
2012 IEEE Conference on Control Applications
,
Dubrovnik, Croatia
,
Oct. 3–5
, pp.
196
201
.
15.
Zhang
,
H.
,
Xie
,
Y.
,
Xiao
,
G.
, and
Zhai
,
C.
,
2018
, “
Closed-Form Solution of Discrete-Time Optimal Control and Its Convergence
,”
IET Control Theory Appl.
,
12
(
3
), pp.
413
418
.
16.
Lin
,
Z.
, and
Saberi
,
A.
,
1995
, “
Semi-Global Exponential Stabilization of Linear Discrete-Time Systems Subject to Input Saturation via Linear Feedbacks
,”
Syst. Control Lett.
,
24
(
2
), pp.
125
132
.
17.
Jamak
,
A.
,
2000
, “
Stabilization of Discrete-Time Systems With Bounded Control Inputs
,”
Master’s thesis
,
University of Waterloo
,
Canada
.
18.
Amato
,
F.
, and
Ariola
,
M.
,
2005
, “
Finite-Time Control of Discrete-Time Linear Systems
,”
IEEE Trans. Automat. Contr.
,
50
(
5
), pp.
724
729
.
19.
Kao
,
C. K.
,
Sinha
,
A.
, and
Mahalanabis
,
A. K.
,
1987
, “
A Digital Algorithm for Near-Minimum-Time Control of Robot Manipulators
,”
ASME J. Dyn. Syst. Meas. Contr.
,
109
(
4
), pp.
320
327
.
20.
Sinha
,
A.
, and
Kao
,
C. K.
,
1989
, “
An Algorithm for Near-Minimum-Time Control of Linear Systems With Input Constraints
,”
Contr. Comput.
,
17
(
1
), pp.
18
21
.
21.
Sinha
,
A.
, and
Mittal
,
S.
,
1988
, “
Near-Minimum-Time Control of a Flexible One Link Robot
,”
Proc. Am. Control Conf.
,
1
, pp.
74
82
.
22.
Meckl
,
P. H.
, and
Seering
,
W.
,
1985
, “
Active Damping in a Three-Axis Robotic Manipulator
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
107
(
1
), pp.
38
46
.
You do not currently have access to this content.