Abstract

This paper introduces a novel nonlinear model predictive controller (NMPC) formulation for real-time obstacle avoidance on heavy equipment by modeling both vehicle and obstacles as convex superellipsoids. The combination of this approach with the separating hyperplane theorem and optimization engine (OpEn) allows to achieve efficient obstacle avoidance in autonomous heavy equipment and robotics. We demonstrate the efficacy of the approach through simulated and experimental results, showcasing a skid-steer loader’s capability to navigate in obstructed environments.

References

1.
Khan
,
R.
,
Malik
,
F. M.
,
Raza
,
A.
, and
Mazhar
,
N.
,
2021
, “
Comprehensive Study of Skid-Steer Wheeled Mobile Robots: Development and Challenges
,”
Int. J. Rob. Res. Appl.
,
48
(
1
), pp.
142
156
.
2.
Liu
,
J.
,
Jayakumar
,
P.
,
Stein
,
J. L.
, and
Ersal
,
T.
,
2018
, “
A Nonlinear Model Predictive Control Formulation for Obstacle Avoidance in High-Speed Autonomous Ground Vehicles in Unstructured Environments
,”
Veh. Syst. Dyn.
,
56
(
6
), pp.
853
882
.
3.
Xue
,
Z.
, and
Gonsalves
,
T.
,
2021
, “
Vision Based Drone Obstacle Avoidance by Deep Reinforcement Learning
,”
AI
,
2
(
3
), pp.
366
380
.
4.
Gai
,
S. N.
,
Sun
,
R.
,
Chen
,
S. J.
, and
Ji
,
S.
,
2019
, “
6-DOF Robotic Obstacle Avoidance Path Planning Based on Artificial Potential Field Method
,”
International Conference on Ubiquitous Robots
,
Jeju, South Korea
,
June 24–27
, IEEE, pp.
165
168
.
5.
Patle
,
B.
,
Ganesh Babu
,
L.
,
Pandey
,
A.
,
Parhi
,
D.
, and
Jagadeesh
,
A.
,
2019
, “
A Review: On Path Planning Strategies for Navigation of Mobile Robot
,”
Defence Technol.
,
15
(
4
), pp.
582
606
.
6.
Crane III
,
C. D.
,
Armstrong II
,
D. G.
, and
Rankin
,
A. L.
,
1995
, “
Autonomous Navigation of Heavy Construction Equipment
,”
Comput. Aided Civ. Infrastruct. Eng.
,
10
(
5
), pp.
357
370
.
7.
Melenbrink
,
N.
,
Werfel
,
J.
, and
Menges
,
A.
,
2020
, “
On-Site Autonomous Construction Robots: Towards Unsupervised Building
,”
Autom. Construct.
,
119
, p.
103312
.
8.
Teizer
,
J.
,
Allread
,
B. S.
,
Fullerton
,
C. E.
, and
Hinze
,
J.
,
2010
, “
Autonomous Pro-active Real-Time Construction Worker and Equipment Operator Proximity Safety Alert System
,”
Autom. Construct.
,
19
(
5
), pp.
630
640
.
9.
Grüne
,
L.
,
Pannek
,
J.
,
Grüne
,
L.
, and
Pannek
,
J.
,
2017
,
Nonlinear Model Predictive Control
,
Springer
,
Cham, Switzerland
.
10.
Boyd
,
S. P.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
11.
Pauls
,
J.-H.
,
Boxheimer
,
M.
, and
Stiller
,
C.
,
2022
, “
Real-Time Cooperative Motion Planning Using Efficient Model Predictive Contouring Control
,”
IEEE Intelligent Vehicles Symposium
,
Aachen, Germany
,
June 5–9
, IEEE, pp.
1495
1503
.
12.
Menon
,
M. S.
,
Ravi
,
V.
, and
Ghosal
,
A.
,
2017
, “
Trajectory Planning and Obstacle Avoidance for Hyper-redundant Serial Robots
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041010
.
13.
Smith
,
N. E.
,
Arendt
,
C. D.
,
Cobb
,
R. G.
, and
Reeger
,
J. A.
,
2017
, “
Implementing Conditional Inequality Constraints for Optimal Collision Avoidance
,”
J. Aeronaut. Aerosp. Eng.
,
6
(
3
).
14.
Wang
,
Y.
,
Han
,
L.
,
Li
,
M.
,
Wang
,
Q.
,
Zhou
,
J.
, and
Cartmel
,
M.
,
2004
, “
A Real-Time Path Planning Approach Without the Computation of Cspace Obstacles
,”
Robotica
,
22
(
2
), pp.
173
187
.
15.
Scattolini
,
R.
,
2009
, “
Architectures for Distributed and Hierarchical Model Predictive Control—A Review
,”
J. Process Control
,
19
(
5
), pp.
723
731
.
16.
Khan
,
S.
,
2022
, “
Design, Testing and Validation of Model Predictive Control for an Unmanned Ground Vehicle
,” PhD Thesis,
UNSW Library
,
Sydney, Australia
.
17.
Rafai
,
A. N. A.
,
Adzhar
,
N.
, and
Jaini
,
N. I.
,
2022
, “
A Review on Path Planning and Obstacle Avoidance Algorithms for Autonomous Mobile Robots
,”
J. Rob.
,
2022
(
1
), pp.
1
14
.
18.
Cai
,
G.
,
Chen
,
B. M.
, and
Lee
,
T. H.
,
2011
,
Unmanned Rotorcraft Systems
,
Springer
,
London, UK
.
19.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University Press
,
Cambridge, UK
.
20.
Pazderski
,
D.
, and
Kozłowski
,
K.
,
2008
, “
Trajectory Tracking Control of Skid-Steering Robot—Experimental Validation
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
5377
5382
.
21.
Sopasakis
,
P.
,
Fresk
,
E.
, and
Patrinos
,
P.
,
2020
, “
OpEn: Code Generation for Embedded Nonconvex Optimization
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
6548
6554
.
22.
Sathya
,
A.
,
Sopasakis
,
P.
,
Van Parys
,
R.
,
Themelis
,
A.
,
Pipeleers
,
G.
, and
Patrinos
,
P.
,
2018
, “
Embedded Nonlinear Model Predictive Control for Obstacle Avoidance Using PANOC
,”
ECC
,
Limassol, Cyprus
, pp.
1523
1528
.
23.
Weisstein
,
E. W.
,
2002
,
CRC Concise Encyclopedia of Mathematics
,
CRC Press
,
New York
.
24.
Gridgeman
,
N. T.
,
1970
, “
Lamé Ovals
,”
Math. Gazette
,
54
(
387
), pp.
31
37
.
25.
Ericson
,
C.
,
2004
,
Real-Time Collision Detection
,
CRC Press
,
Boca Raton, FL
.
26.
Bauschke
,
H. H.
, and
Combettes
,
P. L.
,
2017
,
Convex Analysis and Monotone Operator Theory in Hilbert Spaces
,
Springer
,
Cham, Switzerland
.
27.
Reiter
,
M.
, and
Abel
,
D.
,
2015
, “
Two and a Half Carrots—A Versatile and Intuitive Optimisation-Based Path-Following Approach for Road Vehicles
,”
IEEE MED
,
Torremolinos, Spain
,
June 16–19
, IEEE, pp.
364
370
.
You do not currently have access to this content.