Abstract

Robotic Wire Arc Additive Manufacturing (WAAM) is a metal additive manufacturing technology offering flexible 3D printing while ensuring high-quality near-net-shape final parts. However, WAAM also suffers from geometric imprecision, especially for low-melting-point metals such as aluminum alloys. In this article, we present a multi-robot framework for WAAM process monitoring and control. We consider a three-robot setup: a 6-DoF welding robot, a 2-DoF trunnion platform, and a 6-DoF sensing robot with a wrist-mounted laser line scanner measuring the printed part height profile. The welding parameters, including the wire feed rate, are held constant based on the materials used, so the control input is the robot path speed. The measured output is the part height profile. The planning phase decomposes the target shape into slices of uniform height. During runtime, the sensing robot scans each printed layer, and the robot path speed for the next layer is adjusted based on the deviation from the desired profile. The adjustment is based on an identified model correlating the path speed to changes in height. The control architecture coordinates the synchronous motion and data acquisition between all robots and sensors. Using a three-robot WAAM testbed, we demonstrate significant improvements of the closed-loop scan-n-print approach over the current open loop result on both a flat wall and a more complex turbine blade shape.

References

1.
Williams
,
S. W.
,
Martina
,
F.
,
Addison
,
A. C.
,
Ding
,
J.
,
Pardal
,
G.
, and
Colegrove
,
P.
,
2016
, “
Wire + Arc Additive Manufacturing
,”
Mater. Sci. Technol.
,
32
(
7
), pp.
641
647
.
2.
Busachi
,
A.
,
Erkoyuncu
,
J.
,
Colegrove
,
P.
,
Martina
,
F.
, and
Ding
,
J.
,
2015
, “
Designing a WAAM Based Manufacturing System for Defence Applications
,”
Procedia CIRP
,
37
, pp.
48
53
(CIRPe 2015—Understanding the Life Cycle Implications of Manufacturing).
3.
He
,
H.
,
Ren
,
J.
,
Dhar
,
J.
,
Saunders
,
G.
,
Wason
,
J.
,
Samuel
,
J.
,
Julius
,
A.
, and
Wen
,
J. T.
,
2024
, “Open-Source Software Architecture for Multi-robot Wire Arc Additive Manufacturing (WAAM),”
arxiv: 2408.04677
https://arxiv.org/abs/2408.04677
4.
Xiong
,
Y.
,
Park
,
S.-I.
,
Padmanathan
,
S.
,
Dharmawan
,
A.
,
Foong
,
S.
,
Rosen
,
D.
, and
Soh
,
G.
,
2019
, “
Process Planning for Adaptive Contour Parallel Toolpath in Additive Manufacturing With Variable Bead Width
,”
Int. J. Adv. Manuf. Technol.
,
105
(
10
), pp.
4159
4170
.
5.
Dharmawan
,
A. G.
,
Xiong
,
Y.
,
Foong
,
S.
, and
Song Soh
,
G.
,
2020
, “
A Model-Based Reinforcement Learning and Correction Framework for Process Control of Robotic Wire Arc Additive Manufacturing
,” 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, May 31–June 4, pp.
4030
4036
.
6.
Ma
,
G.
,
Zhao
,
G.
,
Li
,
Z.
,
Yang
,
M.
, and
Xiao
,
W.
,
2019
, “
Optimization Strategies for Robotic Additive and Subtractive Manufacturing of Large and High Thin-Walled Aluminum Structures
,”
Int. J. Adv. Manuf. Technol.
,
101
(
5
), pp.
1275
1292
.
7.
Lim
,
W. S.
,
Dharmawan
,
A. G.
, and
Soh
,
G. S.
,
2022
, “
Development and Performance Evaluation of a Hybrid-Wire Arc Additive Manufacturing System Based on Robot Manipulators
,”
Mater. Today: Proc.
,
70
, pp.
587
592
.
8.
Surovi
,
Nowrin Akter
,
Dharmawan
,
Audelia G.
, and
Soh
,
Gim Song
,
2021
, “
A Study on the Acoustic Signal Based Frameworks for the Real-Time Identification of Geometrically Defective Wire Arc Bead
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Online, Virtual
,
Aug. 17–20, p. V03AT03A003
.
9.
Surovi
,
N. A.
, and
Soh
,
G. S.
,
2023
, “
Acoustic Feature Based Geometric Defect Identification in Wire Arc Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
18
(
1
), p.
e2210553
.
10.
Kim
,
D.-W.
,
Choi
,
J.-S.
, and
Nnaji
,
B. O.
,
1998
, “
Robot Arc Welding Operations Planning With a Rotating/Tilting Positioner
,”
Int. J. Prod. Res.
,
36
(
4
), pp.
957
979
.
11.
Ahmad
,
S.
, and
Luo
,
S.
,
1989
, “
Coordinated Motion Control of Multiple Robotic Devices for Welding and Redundancy Coordination Through Constrained Optimization in Cartesian Space
,”
IEEE Trans. Rob. Autom.
,
5
(
4
), pp.
409
417
.
12.
Bhatt
,
P. M.
,
Kulkarni
,
A.
,
Malhan
,
R. K.
, and
Gupta
,
S. K.
,
2021
, “
Optimizing Part Placement for Improving Accuracy of Robot-Based Additive Manufacturing
,” 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, May 30–June 5, pp.
859
865
.
13.
Schmitz
,
M.
,
Wiartalla
,
J.
,
Gelfgren
,
M.
,
Mann
,
S.
,
Corves
,
B.
, and
Hüsing
,
M.
,
2021
, “
A Robot-Centered Path-Planning Algorithm for Multidirectional Additive Manufacturing for WAAM Processes and Pure Object Manipulation
,”
Appl. Sci.
,
11
(
13
), p.
5759
.
14.
Michel
,
F.
,
Lockett
,
H.
,
Ding
,
J.
,
Martina
,
F.
,
Marinelli
,
G.
, and
Williams
,
S.
,
2019
, “
A Modular Path Planning Solution for Wire + Arc Additive Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
60
, pp.
1
11
.
15.
Lizarralde
,
N.
,
Coutinho
,
F.
, and
Lizarralde
,
F.
,
2022
, “
Online Coordinated Motion Control of a Redundant Robotic Wire Arc Additive Manufacturing System
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
9675
9682
.
16.
Hu
,
Y.
,
Huang
,
B.
, and
Yang
,
G.-Z.
,
2015
, “
Task-Priority Redundancy Resolution for Co-operative Control Under Task Conflicts and Joint Constraints
,” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Sept. 28–Oct. 2, pp.
2398
2405
.
17.
He
,
H.
,
Lu
,
C.-L.
,
Wen
,
Y.
,
Saunders
,
G.
,
Yang
,
P.
,
Schoonover
,
J.
,
Wason
,
J.
,
Julius
,
A.
, and
Wen
,
J. T.
,
2023
, “
High-Speed High-Accuracy Spatial Curve Tracking Using Motion Primitives in Industrial Robots
,” 2023 IEEE International Conference on Robotics and Automation (ICRA), London, May 29–June 2, pp.
12289
12295
.
18.
He
,
H.
,
Lu
,
C.-L.
,
Saunders
,
G.
,
Wason
,
J.
,
Yang
,
P.
,
Schoonover
,
J.
,
Ajdelsztajn
,
L.
,
Paternain
,
S.
,
Julius
,
A.
, and
Wen
,
J. T.
,
2024
, “
Fast and Accurate Relative Motion Tracking for Dual Industrial Robots
,”
IEEE Rob. Autom. Lett.
,
9
(
11
), pp.
10153
10160
.
19.
He
,
H.
,
Aksoy
,
B.
,
Saunders
,
G.
,
Wason
,
J.
, and
Wen
,
J. T.
,
2023
, “
Plug-and-Play Software Architecture for Coordinating Multiple Industrial Robots and Sensors From Multiple Vendors
,” 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, Aug. 26–30, pp.
1
8
.
20.
Wason
,
J. D.
, and
Wen
,
J. T.
,
2023
, “
Robot Raconteur®: Updates on an Open Source Interoperable Middleware for Robotics
,” 2023 IEEE 19th International Conference on Automation Science and Engineering (CASE), Auckland, Aug. 26–30, pp.
1
8
.
21.
Xu
,
J.
,
Hoo
,
J. L.
,
Dritsas
,
S.
, and
Fernandez
,
J. G.
,
2022
, “
Hand-Eye Calibration for 2D Laser Profile Scanners Using Straight Edges of Common Objects
,”
Rob. Comput. Integr. Manuf.
,
73
, p.
102221
.
22.
Handa
,
H.
,
Okumura
,
S.
, and
Nio
,
S.
,
1997
, “
The Robotic Easy Teaching System in Computer Aided Welding
,”
NIST Special Publication (USA)
, Vol.
923
, pp.
562
575
.
23.
Besl
,
P.
, and
McKay
,
N. D.
,
1992
, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
2
), pp.
239
256
.
You do not currently have access to this content.