Capacitive displacement sensors are widely used in precision manufacturing and metrology because they measure displacements with nanometer resolution. Prior literature usually treats capacitive sensors consisting of electrodes arranged as parallel plates. In this work, the target electrode is spherical, which is common in machine tool metrology, spindle metrology, and the measurement of sphericity. The capacitance due to a gap between flat and spherical electrodes is less than that of two flat electrodes, which causes four effects. As the diameter of the target electrode is reduced, the sensitivity increases, the sensing range decreases, the sensing range shifts toward the target, and the sensor becomes nonlinear. This paper demonstrates and quantifies these effects for a representative capacitive sensor, using finite element analysis and experimental testing. For larger spheres, the effects are correctible with apparent sensitivities, but measurements with the smallest spheres become increasingly nonlinear and inaccurate.

1.
ANSI/ASME B5.54, 1992, Methods for Performance Evaluation of Computer Numerically Controlled Machining Centers, ASME, New York.
2.
ANSI/ASME B5.57, 2000, Methods for Performance Evaluation of Computer Numerically Controlled Lathes and Turning Centers, ASME, New York.
3.
ANSI/ASME B89.3.4M, 1985, Axes of Rotation–Methods for Specifying and Testing, ASME, New York.
4.
Grejda, R. D., 2002, “Use and Calibration of Ultra Precision Axes of Rotation with Nanometer Level of Metrology,” Ph.D. thesis, Penn State University, State College, PA.
5.
Morgan
,
V. T.
, and
Brown
,
D. E.
,
1969
, “
A Differential-Capacitance Transducer for Measuring Small Displacements
,”
J. Phys. E
,
2
, pp.
793
795
.
6.
Jones
,
R. V.
, and
Richards
,
J. C. S.
,
1973
, “
The Design and Some Applications of Sensitive Capacitance Micrometers
,”
J. Phys. E
,
6
, pp.
589
600
.
7.
Stacey
,
F. D.
,
Rynn
,
J. M. W.
,
Little
,
E. C.
, and
Croskell
,
C.
,
1969
, “
Displacement and Tilt Transducers of 140 dB Range
,”
J. Phys. E
,
2
, pp.
945
949
.
8.
Schofield
,
J. W.
,
1972
, “
A Linear Capacitance Micrometer
,”
J. Phys. E
,
5
, pp.
822
825
.
9.
Sydenham
,
P. H.
,
1972
, “
Microdisplacement Transducers
,”
J. Phys. E
,
5
, pp.
721
733
.
10.
Rigden
,
J. D.
,
1977
, “
A Capacitive Bore Gauge
,”
J. Phys. E
,
10
, pp.
1276
1278
.
11.
Hicks
,
T. R.
,
Reay
,,
N. K.
and
Atherton
,
P. D.
,
1984
, “
The Application of Capacitance Micrometry to the Control of Fabry-Perot Etalons
,”
J. Phys. E
,
17
, pp.
49
55
.
12.
Wolfendale
,
P. C. F.
,
1968
, “
Capacitive Displacement Transducers with High Accuracy and Resolution
,”
J. Phys. E
,
2
, pp.
817
818
.
13.
de Jong
,
G. W.
, and
Meijer
,
G. C. M.
,
1997
, “
An Efficient Retrieving Algorithm for Accurate Capacitive Position Sensors
,”
Sens. Actuators, A
,
58
, pp.
75
84
.
14.
Kolb
,
P. W.
,
Decca
,,
R. S.
and
Drew
,
H. D.
,
1988
, “
Capacitive Sensor for Micropositioning in Two Dimensions
,”
Rev. Sci. Instrum.
,
69
(
1
), pp.
310
312
.
15.
Hague, B., and Foord, T. R., 1971, Alternating Current Bridge Methods, Pittman, London.
16.
Hugill
,
A. L.
,
1982
, “
Displacement Transducers Based on Reactive Sensors in Transformer Ratio Bridges
,”
J. Phys. E
,
15
, pp.
597
606
.
17.
Dratler
,
J.
,
1977
, “
Inexpensive Linear Displacement Transducer Using a Low Power Lock-In Amplifier
,”
Rev. Sci. Instrum.
,
48
(
3
), pp.
327
335
.
18.
Huang
,
S. M.
,
Stott
,
A. L.
,
Green
,
R. G.
, and
Beck
,
M. S.
,
1988
, “
Electronic Transducers for Industrial Measurement of Low Value Capacitances
,”
J. Phys. E
,
21
, pp.
242
250
.
19.
Ashrafi
,
A.
, and
Golnabi
,
H.
,
1999
, “
A High Precision Method for Measuring Very Small Capacitance Changes
,”
Rev. Sci. Instrum.
,
70
(
8
), pp.
3483
3487
.
20.
La´nyi
,
S.
, and
Hrukovic
,
M.
,
2001
, “
Linearization of Inverse-Capacitance-Based Displacement Transducers
,”
Meas. Sci. Technol.
,
12
, pp.
77
81
.
21.
Fritsch
,
K.
,
1987
, “
Linear Capacitive Displacement Sensor With Frequency Readout
,”
Rev. Sci. Instrum.
,
58
(
5
), pp.
861
863
.
22.
Richards
,
J. C. S.
,
1976
, “
Linear Capacitance Proximity Gauges with High Resolution
,”
J. Phys. E
,
9
,
639
646
.
23.
Maxwell, J. C., 1873, A Treatise on Electricity and Magnetism, Vol. 1, Oxford Univ. Press, New York.
24.
Heerens
,
W. C.
, and
Vermeulen
,
F. C.
,
1975
, “
Capacitance of Kelvin Guard-Ring Capacitors with Modified Edge Geometry
,”
J. Appl. Phys.
,
46
, pp.
2486
2490
.
25.
Heerens
,
W. C.
,
1976
, “
The Solution of Laplace’s Equation in Cylindrical and Toroidal Configurations with Rectangular Sectional Shapes and Rotation-Symmetrical Boundary Conditions
,”
J. Appl. Phys.
,
47
(
8
), pp.
3740
3744
.
26.
Heerens
,
W. C.
,
1986
, “
Application of Capacitance Techniques in Sensor Design
,”
J. Phys. E
,
19
, pp.
897
906
.
27.
Lazzarini
,
A.
,
1986
, “
Sources of Error in Dynamic Applications of Electronic Displacement Sensors
,”
Rev. Sci. Instrum.
,
57
(
12
), pp.
3099
3106
.
28.
Hicks, T., and Atherton, P. D., 2000, Nanopositioning Book, Penton Press, London.
29.
Rosa
,
E. B.
, and
Dorsey
,
N. E.
,
1907
,
Bull. Bur. Stds.
,
3
, pp.
433
604
.
30.
Khan
,
A. R.
,
Brown
,
I. J.
, and
Brown
,
M. A.
,
1980
, “
The Behavior of Capacitance Displacement Transducers Using Epoxy Resin as an Electrode-Guard Ring Spacer
,”
J. Phys. E
,
13
, pp.
1280
1281
.
31.
Genossar
,
J.
, and
Steinitz
,
M.
,
1990
, “
A Tilted-Plate Capacitance Displacement Sensor
,”
Rev. Sci. Instrum.
,
61
(
9
), pp.
2469
2471
.
32.
Harb, S. M., Chetwynd, D. G., and Smith, S. T., 1995, “Tilt Errors in Parallel Plate Capacitive Micrometry,” International Progress in Precision Engineering 8th International Precision Engineering Seminar, Elsevier, Compiegne, France pp. 147–150.
33.
Brown
,
M. A.
, and
Bulleid
,,
C. E.
,
1978
, “
The Effect of Tilt and Surface Damage on Practical Capacitance Displacement Transducers
,”
J. Phys. E
,
11
, pp.
429
432
.
34.
Puers
,
R.
, and
Lapadatu
,
D.
,
1996
, “
Electrostatic Forces and Their Effects on Capacitive Mechanical Sensors
,”
Sens. Actuators, A
,
56
, pp.
203
210
.
35.
Bonse
,
M. H. W.
,
Mul
,
C.
, and
Spronck
,
J. W.
,
1995
, “
Finite-Element Modelling as a Tool for Designing Capacitive Position Sensor
,”
Sens. Actuators, A
,
46-47
, pp.
266
269
.
36.
Ansel
,
Y.
,
Romanowicz
,
B.
,
Renaud
,,
P.
and
Schrofer
,
G.
,
1998
, “
Global Model Generation for a Capacitive Silicon Accelerometer by Finite Element Analysis
,”
Sens. Actuators, A
,
67
, pp.
153
158
.
37.
Khan
,
S. H.
,
Grattan
,
K. T. V.
, and
Finkelstein
,
L.
,
1999
, “
Investigation of Leakage Flux in a Capacitive Angular Displacement Sensor Used in Torque Motors by 3D Finite Element Field Modeling
,”
Sens. Actuators, A
,
76
, pp.
253
259
.
38.
Kuijpers
,
A. A.
,
Krijnen
,
G. J. M.
,
Wiegerink
,
R. J.
,
Lammerink
,
T. S. J.
, and
Elwenspoek
,
M.
,
2003
, “
2D-Finite-Element Simulations for Long-Range Capacitive Position Sensor
,”
J. Micromech. Microeng.
,
13
, pp.
S183–S189
S183–S189
.
39.
La´nyi
,
S.
,
1998
, “
Analysis of Linearity Errors of Inverse Capacitance Position Sensors
,”
Meas. Sci. Technol.
,
9
, pp.
1757
1764
.
40.
Gladwin
,
M. T.
, and
Wolfe
,
J.
,
1975
, “
Linearity of Capacitance Displacement Transducers
,”
Rev. Sci. Instrum.
,
46
(
8
), pp.
1099
1100
.
41.
Smith, P., 2003, Analysis and Application of Capacitive Displacement Sensors to Curved Surfaces, Master’s thesis, University of Kentucky, Lexington, KY.
You do not currently have access to this content.