This paper presents the design and implementation of a two-input/two-output fuzzy logic-based torque control system embedded in an open architecture computer numerical control (CNC) for optimizing the material removal rate in high-speed milling processes. The control system adjusts the feed rate and spindle speed simultaneously as needed to regulate the cutting torque using the CNC’s own resources. The control system consists of a two-input (i.e., torque error and change of error), two-output (i.e., feed rate and spindle speed increment) fuzzy controller, which is embedded within the kernel of a standard open control. Two approaches are tested, and their performance is assessed using several performance measurements. These approaches are a two-input/two-output fuzzy controller and a single-output (i.e., feed rate modification only) fuzzy controller. The results demonstrate that the proposed control strategy provides better accuracy and machining cycle time than other strategies, thus increasing the metal removal rate.

1.
Engin
,
S.
, and
Altintas
,
Y.
, 2001, “
Mechanics and Dynamics of General Milling Cutters Part I: Helical End Mills
,”
Int. J. Mach. Tools Manuf.
0890-6955
41
, pp.
2195
2212
.
2.
Haber
,
R. E.
,
Jiménez
,
J. E.
,
Coronado
,
J. L.
, and
Jiménez
,
A.
, 2004, “
Cutting Force Model for a High-Speed Machining Process
,”
Rev. Metal. Madrid
,
40
(
4
), pp.
247
258
.
3.
Roth
,
D.
,
Ismail
,
F.
, and
Bedi
,
S.
, 2003, “
Mechanistic Model of the Milling Process Using an Adaptive Depth Buffer
,”
Comput.-Aided Des.
0010-4485
35
, pp.
1287
1303
.
4.
Martellotti
,
M.
, 1945, “
An Analysis of the Milling Process, Part II—Down Milling
,”
Trans. ASME
0097-6822,
67
(
1
), pp.
233
251
.
5.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
, 1996, “
Prediction of Milling Force Coefficients from Orthogonal Cutting Data
,”
ASME J. Eng. Ind.
0022-0817,
118
, pp.
216
224
.
6.
Ying
,
H.
, 1999, “
Analytical Structure of the Typical Fuzzy Controllers Employing Trapezoidal Input Fuzzy Sets and Nonlinear Control Rules
,”
Inf. Sci. (N.Y.)
0020-0255,
116
(
2–4
), pp.
177
203
.
7.
Haber
,
R. E.
,
Alique
,
A.
,
Alique
,
J. R.
,
Hernández
,
J.
, and
Uribe-Etxabarria
,
R.
, 2003, “
Embedded Fuzzy Control System for Machining Processes. Results of a Case-Study
,”
Comput Ind.
0166-3615,
50
, pp.
353
366
.
8.
Sinumerik 840d, OEM-package NCK, software release 4, User’s Manual, Siemens AG, 1999.
9.
Haber
,
R. E.
,
Haber
,
R. H.
,
Alique
,
A.
, and
Ros
,
S.
, 2002, “
Application of Knowledge-Based Systems for Supervision and Control of Machining Processes
,” in
Handbook of Software Engineering and Knowledge Engineering 2
,
S. K.
Chang
, ed.,
World Scientific
, Singapore, pp.
673
710
.
10.
Haber
,
R. E.
,
Haber-Haber
,
R.
, and
Alique
,
A.
, 2000, “
Hierarchical Fuzzy Control of the Milling Process with a Self-Tuning Algorithm
,” in
Proceedings of the IEEE International Symposium on Intelligent Control
, Patras, Greece, pp.
115
120
.
11.
Jiménez
,
J. E.
,
Haber
,
R. E.
, and
Alique
,
J. R.
, 2004, “
A MIMO Fuzzy Control System for High Speed Machining Processes. Results of a Case Study
,” in
Proceedings of the IEEE Conference on Fuzzy Systems
, Budapest, Hungary, pp.
901
905
.
12.
Haber
,
R. E.
,
Schmitt-Braess
,
G.
,
Haber-Haber
,
R.
,
Alique
,
A.
, and
Alique
,
J. R.
, 2003, “
Using Circle Criteria for Verifying Asymptotic Stability in PI-Like Fuzzy Control Systems. An Application to the Milling Process
,”
IEE Proc.: Control Theory Appl.
1350-2379,
150
(
6
), pp.
619
627
.
You do not currently have access to this content.