This paper presents the development of models that describe the surface-generation process for microendmilling. The surface-generation models for the sidewall and floor surfaces consist of deterministic and stochastic models. In the sidewall surface-generation model, the deterministic model characterizes the surface topography generated from the relative motion between the major cutting edge and the workpiece material. The model includes the effects of the process kinematics, dynamics, tool edge serration, and process faults (e.g., tool tip runout). The stochastic model predicts the increased surface roughness generated from ploughing due to the significant tool edge radius effect. In the floor surface-generation model, the deterministic model characterizes the three-dimensional surface topography over the entire floor surface and considers the effects of the minimum chip thickness, the elastic recovery, and the transverse vibration. The variation of the ploughing amount across the swept arc of the cutter due to the varying chip load conditions is considered in the stochastic model.

1.
Friedrich
,
C. R.
, and
Kang
,
S. D.
, 1994, “
Micro Heat Exchangers Fabricated by Diamond Machining
,”
Precis. Eng.
0141-6359,
16
, pp.
56
59
.
2.
Adams
,
D. P.
,
Vasile
,
M. J.
,
Benavides
,
G.
, and
Campbell
,
A. N.
, 2001, “
Micromilling of Metal Alloys With Focused Ion Beam Fabricated Tools
,”
Precis. Eng.
0141-6359,
25
, pp.
107
113
.
3.
Liu
,
X.
,
Jun
,
M.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2004, “
Cutting Mechanisms and Their Influence on Dynamic Forces, Vibrations and Stability in Micro-Endmilling
,”
Proc. of ASME International Mechanical Engineering Congress and Exposition
,
ASME
, New York, pp.
583
592
.
4.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2004, “
On the Modeling and Analysis of Machining Performance in Microendmilling, Part I: Surface Generation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
685
694
.
5.
Weule
,
H.
,
Huntrup
,
V.
, and
Trischle
,
H.
, 2001, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturization
,”
CIRP Ann.
0007-8506,
50
, pp.
61
64
.
6.
Kim
,
C. J.
,
Bono
,
M.
, and
Ni
,
J.
, 2002, “
Experimental Analysis of Chip Formation in Micro-Milling
,”
Trans. North Am. Manuf. Res. Inst. SME
1047-3025,
30
, pp.
1
8
.
7.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2004, “
On the Modeling and Analysis of Machining Performance in Microendmilling, Part II: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
4
), pp.
695
705
.
8.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2007, “
Model-Based Analysis of the Surface Generation in Microendmilling—Part II: Experimental Validation and Analysis
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
3
), pp.
461
469
.
9.
Merdol
,
S. D.
, and
Altintas
,
Y.
, 2002, “
Mechanics and Dynamics of Serrated End Mills
,”
Proc. of ASME International Mechanical Engineering Congress and Exposition
,
ASME
, New York, pp.
337
342
.
10.
Park
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
, 2006, “
Microstructure-Level Model for the Prediction of Tool Failure in WC-CO Cutting Tool Materials
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
3
), pp.
739
748
.
11.
Koshy
,
P.
,
Jain
,
V. K.
, and
Lal
,
G. K.
, 1993, “
A Model for the Topography of Diamond Grinding Wheels
,”
Wear
0043-1648,
169
(
2
), pp.
237
242
.
12.
Stout
,
K. J.
,
Sullivan
,
P. J.
,
Dong
,
W. P.
,
Mainsah
,
E.
,
Mathia
,
T.
, and
Zahouani
,
H.
, 1993, “
The Development of Methods for the Characterization of Roughness in Three Dimensions
,” Publication No. EUR 15178 EN of the Commission of the European Communities, pp.
1
358
.
You do not currently have access to this content.