Abstract

Traditional approaches in tissue engineering are limited in that cell seeding is inefficient and cells cannot be located on a scaffold precisely. Moreover, the traditional methods, which rely on a random and probabilistic process, produce scaffolds with low regularity in porosity, pore size, and interconnection of pores. In this research, we propose a novel method to fabricate a scaffold for tissue engineering, which can overcome the limitations of traditional approaches. Cell-encapsulated alginate solution and cross-linker solution were laminarly flowed into a microfluidic channel. Then, the alginate solution was gelled to form a cell-encapsulated alginate microfiber by the diffusion of gelation ion from the cross-linker solution and ejected from the outlet of channel to the reservoir. The diameter of the fabricated microfiber can be controlled by the flow rate ratio of the two solutions. Moreover, this method, which has no cell seeding step, eliminates the possibility of loss of cells and the problems related to distribution of cells. We also show the feasibility of the alginate microfiber as a scaffold, which can promote chondrogenesis. The chondrogenesis in the alginate microfiber was evaluated by both histological and biochemical analyses. The increase of major markers of chondrogenesis such as glycosaminoglycan and collagen shows the potential of alginate microfiber as a scaffold for cartilage.

1.
Yang
,
S.
,
Leong
,
K. F.
,
Du
,
Z.
, and
Chua
,
C. K.
, 2001, “
The Design of Scaffolds for Use in Tissue Engineering, Part I. Traditional Factors
,”
Tissue Eng.
1076-3279,
7
, pp.
679
689
.
2.
Hutmacher
,
D.
, 2001, “
Scaffold Design and Fabrication Technologies for Engineering Tissues State of the Art and Future Perspectives
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
12
, pp.
107
124
.
3.
Smidsrød
,
O.
, and
Skjåk-Bræk
,
G.
, 1990, “
Alginate as Immobilization Matrix for Cells
,”
Trends Biotechnol.
0167-7799,
8
, pp.
71
78
.
4.
Anderer
,
U.
, and
Libera
,
J.
, 2002, “
In Vitro Engineering of Human Autogenous Cartilage
,”
J. Bone Miner. Res.
0884-0431,
17
, pp.
1420
1429
.
5.
Marijnissen
,
W. J. C. M.
,
van Osch
,
G. J. V. M.
,
Aigner
,
J.
,
van der Veen
,
S. W.
,
Hollander
,
A. P.
,
Verwoerd-Verhoef
,
H. L.
, and
Verhaar
,
J. A. N.
, 2002, “
Alginate as a Chondrocyte-Delivery Substance in Combination With a Non-Woven Scaffold for Cartilage Tissue Engineering
,”
Biomaterials
0142-9612,
23
, pp.
1511
1517
.
6.
Loty
,
S.
,
Sautier
,
J. M.
,
Loty
,
C.
,
Boulekbache
,
H.
,
Kokubo
,
T.
, and
Forest
,
N.
, 1998, “
Cartilage Formation by Fetal Rat Chondrocytes Cultured in Alginate Beads: A Proposed Model for Investigating Tissuebiomaterial Interactions
,”
J. Biomed. Mater. Res.
0021-9304,
42
, pp.
213
222
.
7.
Chang
,
S. C. N.
,
Rowley
,
J. A.
,
Tobias
,
G.
,
Genes
,
N. G.
,
Roy
,
A. K.
,
Mooney
,
D. J.
,
Vacanti
,
C. A.
,
Bonassar
, and
L. J.
, 2001, “
Injection Molding of Chondrocyte/Alginate Constructs in the Shape of Facial Implants
,”
J. Biomed. Mater. Res.
0021-9304,
55
, pp.
503
511
.
8.
Chia
,
S. H.
,
Schumacher
,
B. L.
,
Klein
,
T. J.
,
Thonar
,
E. J. M. A.
,
Masuda
,
K.
,
Sah
,
R. L.
, and
Watson
,
D.
, 2004, “
Tissue-Engineered Human Nasal Septal Cartilage Using the Alginate-Recovered-Chondrocyte Method
,”
Laryngoscope
0023-852X,
114
, pp.
38
45
.
9.
Jeong
,
W.
,
Kim
,
J.
,
Kim
,
S.
,
Lee
,
S.
,
Mensing
,
G.
, and
Beebe
,
D. J.
, 2004, “
Hydrodynamic Microfabrication via “on the Fly” Photopolymerization of Microscale Fibers and Tubes
,”
Lab Chip
1473-0197,
4
, pp.
576
580
.
10.
Duffy
,
D. C.
,
McDonald
,
J. C.
,
Schueller
,
O. J. A.
, and
Whitesides
,
G. M.
, 1998, “
Rapid Prototyping of Microfluidic Systems in Poly(Dimethylsiloxane)
,”
Anal. Chem.
0003-2700,
70
, pp.
4974
4984
.
11.
Ro
,
K. W.
,
Lim
,
K.
,
kim
,
H.
,
Hahn
, and
J. H.
, 2002, “
Poly(Dimethylsiloxane) Microchip for Percolumn Reaction and Micellar Electrokinetic Chromatography of Biogenic Amines
,”
Electrophoresis
0173-0835,
23
, pp.
1129
1137
.
12.
Ziaie
,
B.
,
Baldi
,
A.
,
Lei
,
M.
,
Gu
,
Y.
, and
Siegel
,
R. A.
, 2004, “
Hard and Soft Micromachining for BioMEMS: Review of Techniques and Examples of Applications in Microfluidics and Drug Delivery
,”
Adv. Drug Delivery Rev.
0169-409X,
56
, pp.
145
172
.
13.
Bashir
,
R.
, 2004, “
BioMEMS: State-of-the-Art in Detection, Opportunities and Prospects
,”
Adv. Drug Delivery Rev.
0169-409X,
56
, pp.
1565
1586
.
14.
Whitesides
,
G. M.
, 2006, “
The Origin and the Future of Microfluidics
,”
Nature (London)
0028-0836,
442
, pp.
368
374
.
15.
Vozzi
,
G.
,
Flaim
,
G.
,
Ahluwalia
,
A.
, and
Bhatia
,
S.
, 2003, “
Fabrication of PLGA Scaffolds Using Soft Lithography and Microsyringe Deposition
,”
Biomaterials
0142-9612,
24
, pp.
2533
2540
.
16.
Leclerc
,
E.
,
Furukawa
,
K. S.
,
Miyata
,
F.
,
Sakai
,
Y.
,
Ushida
,
T.
, and
Fujii
,
T.
, 2004, “
Fabrication of Microstructures in Photosensitive Biodegradable Polymers for Tissue Engineering Applications
,”
Biomaterials
0142-9612,
25
, pp.
4683
4690
.
17.
Yang
,
Y.
,
Basu
,
S.
,
Tomasko
,
D. L.
,
Lee
,
L. J.
, and
Yang
,
S. T.
, 2005, “
Fabrication of Well-Defined PLGA Scaffolds Using Novel Microembossing and Carbon Dioxide Bonding
,”
Biomaterials
0142-9612,
26
, pp.
2585
2594
.
18.
Enobakhare
,
B. O.
,
Bader
,
D. L.
, and
Lee
,
D. A.
, 1996, “
Quantification of Sulfated Glycosaminoglycans in Chondocyte/Alginate Cultures
,”
Anal. Biochem.
0003-2697,
243
, pp.
189
191
.
19.
Hoemann
,
C. D.
,
Sun
,
J.
,
Chrzanowski
,
V.
, and
Buschmann
,
M. D.
, 2002, “
A Multivalent Assay to Detect Glycosaminoglycan, Protein, Collagen, RNA, and DNA Content in Milligram Samples of Cartilage or Hydrogel-Based Repair Cartilage
,”
Anal. Biochem.
0003-2697,
300
, pp.
1
10
.
20.
Knight
,
J. B.
,
Vishwanath
,
A.
,
Brody
,
J. P.
, and
Austin
,
R. H.
, 1998, “
Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microchannels
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
3863
3866
.
21.
Cubaud
,
T.
,
Mason
, and
T. G.
, 2006, “
Folding of Viscous Threads in Diverging Microchannels
,”
Phys. Rev. Lett.
0031-9007,
96
, pp.
114501
.
22.
Mironov
,
V.
,
boland
,
T.
,
Trusk
,
T.
,
Forgacs
,
G.
, and
Markwald
,
R. R.
, 2003, “
Organ Printing: Computer-Aided jet-Based 3D Tissue Engineering
,”
Trends Biotechnol.
0167-7799,
21
, pp.
157
161
.
23.
Xu
,
T.
,
Jin
,
J.
,
Gregory
,
C.
,
Hickman
,
J. J.
, and
Boland
,
T.
, 2005, “
Inkjet Printing of Viable Mammalian Cells
,”
Biomaterials
0142-9612,
26
, pp.
93
99
.
You do not currently have access to this content.