A novel multilevel fuzzy control system is introduced and implemented for online force control of end-milling processes to increase machining productivity and improve workpiece quality, where the cutting force is maintained at its maximum allowable level in the presence of different variations inherent in milling processes, such as tool wear, workpiece geometry, and material properties. In the controller design, the fuzzy rules are generated heuristically without any mathematical model of the milling processes. An adaptation mechanism is embedded to tune the control parameters online, and the resultant closed-loop system is guaranteed to be stable based on the input-output passivity analysis. In the experiment, the control algorithm is implemented using a National Instrument real-time control computer in an open architecture control environment, where high metal removal rates are achieved and the cycle time is reduced by up to 34% over the case without any force controller and by 22% compared with the regular fuzzy logic controller, thereby indicating its effectiveness in improving productivity for actual machining processes.

1.
Das
,
M. K.
, and
Tobias
,
S. A.
, 1967, “
The Relation Between the Static and the Dynamic Cutting of Metals
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
7
, pp.
63
89
.
2.
Tomizuka
,
M.
,
Oh
,
J. H.
, and
Dornfeld
,
D. A.
, 1983, “
Model Reference Adaptive Control of the Milling Process
,”
Proceedings of Control of Manufacturing Processes and Robotic Systems Conference
, pp.
55
63
.
3.
Altintas
,
Y.
, 1994, “
Direct Adaptive Control of End Milling Process
,”
Int. J. Mach. Tools Manuf.
0890-6955,
34
(
4
), pp.
461
472
.
4.
Lauderbaugh
,
L. K.
, and
Ulsoy
,
A. G.
, 1986, “
Model Reference Adaptive Force Control in Milling
,”
Modeling, Sensing, and Control of Manufacturing Processes
,
ASME
,
New York
, pp.
165
179
.
5.
Lauderbaugh
,
L. K.
, and
Ulsoy
,
A. G.
, 1989, “
Model Reference Adaptive Force Control in Milling
,”
ASME J. Eng. Ind.
0022-0817,
111
, pp.
13
21
.
6.
Elbestawi
,
M. A.
, and
Sagherian
,
R.
, 1987, “
Parameter Adaptive Control in Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
27
(
3
), pp.
399
414
.
7.
Elbestawi
,
M. A.
,
Mohamed
,
Y.
, and
Liu
,
L.
, 1990, “
Application of Some Parameter Adaptive Control Algorithms in Machining
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
112
, pp.
611
617
.
8.
Rober
,
S. J.
, and
Shin
,
Y. C.
, 1996, “
Control of Cutting Force for End Milling Processes Using an Extended Model Reference Adaptive Control Scheme
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
118
, pp.
339
347
.
9.
Hayes
,
P. D.
,
Shin
,
Y. C.
, and
Nwokah
,
O. D. I.
, 1993, “
Robust Control Design for Milling Processes
,”
ASME Winter Annual Meeting
,
New Orleans, LA
, DSC-Vol. 50/PED-Vol. 63, pp.
119
125
.
10.
Rober
,
S. J.
,
Shin
,
Y. C.
, and
Nwokah
,
O. D. I.
, 1997, “
A Digital Robust Controller for Cutting Force Control in the End Milling Process
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
, pp.
146
152
.
11.
Kim
,
S. I.
,
Landers
,
R. G.
, and
Ulsoy
,
A. G.
, 2003, “
Robust Machining Force Control With Process Compensation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
423
430
.
12.
Charbonnaud
,
P.
,
Carrillo
,
F. J.
, and
Ladevèze
,
D.
, 2001, “
Monitored Robust Force Control of a Milling Process
,”
Control Eng. Pract.
0967-0661,
9
, pp.
1047
1061
.
13.
Kim
,
M. K.
,
Cho
,
M. W.
, and
Kim
,
K.
, 1994, “
Application of the Fuzzy Control Strategy to Adaptive Force Control of Non-Minimum Phase End Milling Operations
,”
Int. J. Mach. Tools Manuf.
0890-6955,
34
(
5
), pp.
677
696
.
14.
Haber
,
R. E.
,
Alique
,
J. R.
,
Ros
,
S.
, and
Peres
,
C. R.
, 1996, “
Fuzzy Supervisory Control of End Milling Processes
,”
Inf. Sci. (N.Y.)
0020-0255,
89
(
1–2
), pp.
95
106
.
15.
Haber
,
R. E.
,
Peres
,
C. R.
,
Alique
,
A.
,
Ros
,
S.
,
González
,
C.
, and
Alique
,
J. R.
, 1998, “
Toward Intelligent Machining: Hierarchical Fuzzy Control for the End Milling Process
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
6
(
2
), pp.
188
199
.
16.
Haber
,
R. E.
,
Haber
,
R. H.
,
Alique
,
A.
, and
Ros
,
S.
, 2000, “
Hierarchical Fuzzy Control of the Milling Process With a Self-Tuning Algorithm
,”
Proceedings of the 2000 IEEE International Symposium on Intelligent Control
, pp.
115
120
.
17.
Batur
,
C.
, and
Kaperisan
,
V.
, 1993, “
Fuzzy Adaptive Control
,”
Int. J. Syst. Sci.
0020-7721
24
(
2
), pp.
301
314
.
18.
Jee
,
S.
, and
Koren
,
Y.
, 2004, “
Adaptive Fuzzy Logic Controller for Feed Drives of a CNC Machine Tool
,”
Mechatronics
0957-4158,
14
, pp.
299
326
.
19.
Xu
,
C.
, and
Shin
,
Y. C.
, 2005, “
Design of a Multi-Level Fuzzy Controller for Nonlinear Systems and Stability Analysis
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
13
(
6
), pp.
761
778
.
20.
Farinwata
,
S. S.
,
Filev
,
D.
, and
Langari
,
R.
, 2000,
Fuzzy Control Synthesis and Analysis
,
Wiley
,
New York
.
21.
Calcev
,
G.
, 1998, “
Some Remarks in the Stability of Mamdani Fuzzy Control Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
6
(
3
), pp.
436
442
.
22.
Aracil
,
J.
, and
Gordillo
,
F.
, 2000,
Stability Issues in Fuzzy Control
,
Springer-Verlag
,
New York
.
23.
Ying
,
H.
, 1994, “
Practical Design of Nonlinear Fuzzy Controllers With Stability Analysis for Regulating Processes With Unknown Mathematical Models
,”
Automatica
0005-1098,
30
(
7
), pp.
1185
1195
.
24.
Ma
,
C. C. H.
, and
Altintas
,
Y.
, 1990, “
Direct Adaptive Cutting Force Control of Milling Processes
,”
Automatica
0005-1098,
26
(
5
), pp.
899
902
.
25.
Rober
,
S.
, and
Shin
,
Y. C.
, 1995, “
Modeling and Control of CNC Machines Using a PC-Based Open Architecture Controller
,”
Mechatronics
0957-4158,
5
(
4
), pp.
401
420
.
You do not currently have access to this content.