A model for laser milling simulation is presented in this paper. A numerical model able to predict the physical phenomena involved in laser ablation of metals was developed where the heat distribution in the work piece, the prediction of the velocity of the vapor/liquid front, and the physical state of the plasma plume were taken into account. The model is fully 3D and the simulations makes it possible to predict the ablated workpiece volume and the shape of the resulting craters for a single laser pulse or multiple pulses, or for any path of the laser spot. The numerical model was implemented in C++ and an overview of the code capacities is presented.
Issue Section:
Special Section: Micromanufacturing
1.
Zhang
, W.
, Yao
, Y. L.
, and Chen
, K.
, 2001, “Modeling and Analysis of UV Laser Micromachining of Copper
,” Int. J. Adv. Manuf. Technol.
0268-3768, 18
(10
), pp. 323
–331
.2.
Kar
, A.
, and Mazumder
, M.
, 1994, “Mathematical Model for Laser Ablation to Generate Nanoscale and Submicrometer-Size Particles
,” Phys. Rev. E
1063-651X, 49
(1
), pp. 410
–419
.3.
Bulgakova
, N.
, and Bulgakov
, A.
, 2001, “Pulsed Laser Ablation of Solid: Transition From Normal Vaporization to Phase Explosion
,” Appl. Phys. A: Mater. Sci. Process.
0947-8396, 73
(2
), pp. 199
–208
.4.
Kelly
, R.
, and Mlotello
, A.
, 1996, “Comments on Explosive Mechanism of Laser Sputtering
,” Appl. Surf. Sci.
0169-4332, 96–98
, pp. 205
–215
.5.
Bulgakova
, N.
, Bulgakov
, A.
, Bourakov
, I.
, and Bulgakova
, N.
, 2002, “Pulsed Laser Ablation of Solid and Critical Phenomena
,” Appl. Surf. Sci.
0169-4332, 197–198
, pp. 96
–99
.6.
Lunney
, J. G.
, and Jordan
, R.
, 1998, “Pulsed Laser Ablation of Metals
,” Appl. Surf. Sci.
0169-4332, 127–129
, pp. 941
–946
.7.
Franklin
, S. R.
, and Thareja
, R.
, 2004, “Simplified Model to Account for Dependence of Ablation Parameters on Temperature and Phase of the Ablated Material
,” Appl. Surf. Sci.
0169-4332, 222
(1–4
), pp. 293
–306
.8.
Dobrev
, T.
, Pham
, D.
, and Dimov
, S.
, 2005, “A Simulation Model for Crater Formation in Laser Milling
,” In 4M 2005 First International Conference on Multi-Material Micro Manufacture
, E.
Oxford
, ed.9.
Bogaerts
, A.
, Chen
, Z.
, Gijbels
, R.
, and Vertes
, A.
, 2003, “Laser Ablation for Analytical Sampling: What Can We Learn From Modelling?
,” Spectrochim. Acta, Part B
0584-8547, 58
(11
), pp. 1867
–1893
.10.
Anisimov
, S.
, and Luk’yanchuck
, B.
, 2002, “Selected Problems of Laser Ablation Theory
,” Phys. Usp.
1063-7869, 45
(3
), pp. 293
–324
.11.
Song
, K. H.
, and Xu
, X.
, 1998, “Modeling and Analysis of UV Laser Micromachining of Copper
,” Appl. Surf. Sci.
0169-4332, 127
(10
), pp. 111
–116
.12.
Neamtu
, J.
, Mihailescu
, I.
, Ristoscu
, C.
, and Hermann
, J.
, 1999, “Theoretical Modeling of Phenomena in the Pulsed-Laser Deposition Process: Application to a Targets Ablation in Low Pressure N2
,” J. Appl. Phys.
0021-8979, 86
(11
), pp. 6096
–6106
.13.
Bulgakov
, A.
, and Bulgakova
, N.
, 1998, “Gas-Dynamic Effect of the Interaction Between a Pulsed Laser-Ablation Plume and the Ambient Gas: Analogy With an Underexnanded Jet
,” J. Phys. D
0022-3727, 31
(6
), pp. 693
–703
.14.
Sharma
, A. K.
, and Thareja
, R. K.
, 2005, “Plume Dynamics of Laser-Produced Aluminum Plasma in Ambient Nitrogen
,” Appl. Surf. Sci.
0169-4332, 243
, pp. 70
–77
.15.
Tani
, G.
, Orazi
, L.
, Fortunato
, A.
, and Cuccolini
, G.
, 2006, “Laser Ablation Modeling for CNC Machine Tool Application in Mould Manufacturing
,” Fifth International Conference on Mechanics and Materials in Design (M2D’2006)
, J. F.
Silva Gomez
and S. A.
Meguid
, eds.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.