This paper presents the method of variable-feedrate intelligent segmentation as an enhanced approach to feedrate optimization in micromilling that overcomes detrimental scale effects in the process and leads to improved stability and decreased machining time. Due to the high tool-size to feature-size ratio present in micromilling, the maximum allowable feedrate is limited by the sampling rate of the real-time trajectory generation and motion control system. The variable-feedrate intelligent segmentation method is proposed to compensate for the feedrate limitation by intelligent selection of the interpolation technique applied to segments along the tool path in order to reduce the trajectory generation computation time and enable increased sampling frequency. The increased sampling frequency allows higher maximum feedrates providing for increased productivity and improved process stability. The performance of the novel intelligent segmentation approach was benchmarked against recent non-rational B-splines (NURBS) feedrate optimization techniques. Results from the numerical evaluation of the intelligent segmentation technique have demonstrated significant reductions in machining time, with a maximum reduction of over 50% recorded. Furthermore, the results from the study demonstrate the advantages of the intelligent segmentation method in enhancing process stability and maintaining, or marginally decreasing, process error. The variable feedrate intelligent segmentation method developed in this study provides, therefore, an enhanced methodology for path planning in high-speed, high-precision micromilling operations.

1.
Ehmann
,
K. F.
,
Bourell
,
D.
,
Culpepper
,
M. L.
,
Hodgson
,
T. J.
,
Kurfess
,
T. R.
,
Madou
,
M.
,
Rajurkar
,
K.
, and
Devor
,
R. E.
, 2004, “
WTEC Report on International Assessment of Research and Development in Micromanufacturing
,” World Technology Evaluation Center, Inc.
2.
Okazaki
,
Y.
,
Mishima
,
N.
, and
Ashida
,
K.
, 2004, “
Microfactory—Concept, History, and Developments
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
837
845
.
3.
Jun
,
M. B. G.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
, 2006, “
Investigation of the Dynamics of Microend Milling—Part II: Model Validation and Interpretation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
901
912
.
4.
Kim
,
C.
,
Mayor
,
J. R.
, and
Ni
,
J.
, 2004, “
A Static Model of Chip Formation in Microscale Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
, pp.
710
718
.
5.
Lacerda
,
H. B.
, and
Lima
,
V. T.
, 2004, “
Evaluation of Cutting Forces and Prediction of Chatter Vibrations in Milling
,”
J. Braz. Soc. Mech. Sci.
0100-7386,
26
(
1
), pp.
74
81
.
6.
Li
,
H. Z.
,
Li
,
X. P.
, and
Chen
,
X. Q.
, 2003, “
A Novel Chatter Stability Criterion for the Modeling and Simulation of the Dynamic Milling Process in the Time Domain
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
22
, pp.
619
625
.
7.
Li
,
R. Q.
,
Wang
,
Y. H.
,
Wu
,
Z. Y.
, and
Chen
,
Z. N.
, 2006, “
Automatic Generation of an NC Machining Tool-Path for a 3D Curve Based on Polar Coordinates
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
27
, pp.
1119
1123
.
8.
Zhang
,
C.
,
Zhang
,
P.
, and
Cheng
,
F.
, 2001, “
Fairing Spline Curves and Surfaces by Minimizing Energy
,”
Comput.-Aided Des.
0010-4485,
33
, pp.
913
923
.
9.
Tikhon
,
M.
,
Ko
,
T. J.
,
Lee
,
S. H.
, and
Kim
,
H. S.
, 2004, “
Nurbs Interpolator for Constant Material Removal Rate in Open NC Machine Tools
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
, pp.
237
245
.
10.
Cheng
,
M.-Y.
,
Tsai
,
M.-C.
, and
Kuo
,
J.-C.
, 2002, “
Real-Time Nurbs Command Generators for CNC Servo Controllers
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
, pp.
801
813
.
11.
Yang
,
M.
, and
Hong
,
W.
, 2002, “
Three-Dimensional Reference Pulse Linear and Circular Interpolators for CNC Systems
,”
Int. J. Prod. Res.
0020-7543,
2
, pp.
425
439
.
12.
Zeid
,
I.
, 2005,
Mastering CAD∕CAM
,
McGraw Hill
,
New York
.
13.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
, 2005, “
Quintic Spline Interpolation With Minimal Feed Fluctuation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
, pp.
338
349
.
14.
Fleisig
,
R. V.
, and
Spence
,
A. D.
, 2001, “
A Constant Feed and Reduced Angular Acceleration Interpolation Algorithm for Multi-Axis Machining
,”
Comput.-Aided Des.
0010-4485,
33
, pp.
1
15
.
15.
Ren
,
Y.
, and
Lee
,
Y.
, 2004, “
Explicit Free-Form Curve Interpolation and Error Analysis for NC Machining of Complex Surface Models
,”
Computer-Aided Design and Applications
,
1
(
1-4
), pp.
243
250
.
16.
Wang
,
S.
,
Yu
,
H.
, and
Liao
,
H.
, 2006, “
A New High-Efficiency Error Compensation System for CNC Multi-Axis Machine Tools
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
28
, pp.
518
526
.
17.
Yeh
,
S.
, and
Hsu
,
P.
, 2002, “
Adaptive-Feedrate Interpolation for Parametric Curves With a Confined Chord Error
,”
Comput.-Aided Des.
0010-4485,
34
, pp.
229
237
.
18.
Zhiming
,
X.
,
Jincheng
,
C.
, and
Zhengjin
,
F.
, 2002, “
Performance Evaluation of a Real-Time Interpolation Algorithm for NURBS Curves
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
20
, pp.
270
276
.
19.
Yau
,
H.
, and
Kuo
,
M.
, 2001, “
NURBS Machining and Feed Rate Adjustment for High-Speed Cutting of Complex Sculptured Surfaces
,”
Int. J. Prod. Res.
0020-7543,
39
(
1
), pp.
21
41
.
20.
Lo
,
C.
, 1999, “
Real-Time Generation and Control of Cutter Path for 5-Axis CNC Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
39
, pp.
471
488
.
21.
Park
,
J.
,
Nam
,
S.
, and
Yang
,
M.
, 2005, “
Development of a Real-Time Trajectory Generator for NURBS Interpolation Based on the Two-Stage Interpolation Method
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
26
, pp.
359
365
.
22.
Nam
,
S.
, and
Yang
,
M.
, 2004, “
A Study on a Generalized Parametric Interpolator With Real-Time Jerk-Limited Acceleration
,”
Comput.-Aided Des.
0010-4485,
36
, pp.
27
36
.
23.
Cheng
,
C.
, and
Tseng
,
W.
, 2006, “
Design and Implementation of a Real-Time Nurbs Surface Interpolator
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
30
, pp.
98
104
.
24.
Cheng
,
C. W.
, and
Tsai
,
M. C.
, 2004, “
Real-Time Variable Feed Rate Nurbs Curve Interpolator for CNC Machining
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
23
, pp.
865
873
.
25.
Chuang
,
S.-H. F.
, and
Shih
,
J.-L.
, 2006, “
A Novel Approach for Computing C2-Continuous Offset of Nurbs Curves
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
29
, pp.
151
158
.
26.
Lartigue
,
C.
,
Thiebaut
,
F.
, and
Maekawa
,
T.
, 2001, “
CNC Tool Path in Terms of B-Spline Curves
,”
Comput.-Aided Des.
0010-4485,
33
, pp.
307
319
.
27.
Farouki
,
R. T.
,
Manjunathaiah
,
J.
,
Nicholas
,
D.
,
Yuan
,
G.
, and
Jee
,
S.
, 1998, “
Variable-Feedrate CNC Interpolators for Constant Material Removal Rates Along Pythagorean-Hodograph Curves
,”
Comput.-Aided Des.
0010-4485,
30
(
8
), pp.
631
640
.
28.
Sun
,
Y.
,
Wang
,
J.
, and
Guo
,
D.
, 2006, “
Guide Curve Based Interpolation Scheme of Parametric Curves for Precision CNC Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
235
242
.
29.
Mayor
,
J. R.
, and
Sodemann
,
A. A.
, 2007,
An Investigation of Scale Effects on Process Planning for High-Speed High-Precision Micromachining Operations
, in
2nd International Conference on Micromanufacturing
,
Greenville, SC
.
30.
Mayor
,
J. R.
, and
Sodemann
,
A. A.
, 2008, “
Curvature-Based Tool-Path Segmentation for Feedrate Optimization in Micromilling
,”
Trans. NAMRI/SME
1047-3025,
36
, pp.
285
292
.
31.
32.
Insperger
,
T.
,
Gradisek
,
J.
,
Kalveram
,
M.
,
Stepan
,
G.
,
Winert
,
K.
, and
Govekar
,
E.
, 2006, “
Machine Tool Chatter and Surface Location Error in Milling Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
913
920
.
33.
Liu
,
X.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
, 2006, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micromachining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
474
481
.
34.
Oberg
,
E.
,
Jones
,
F. D.
,
Horton
,
H. L.
, and
Ryffell
,
H. H.
, 2000,
Machinery’s Handbook
,
Industrial Press
,
New York
.
35.
Phillip
,
A. G.
,
Kapoor
,
S. G.
, and
Devor
,
R. E.
, 2006, “
A New Acceleration-Based Methodology For Micro∕Meso-Scale Machine Tool Performance Evaluation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
1435
1444
.
You do not currently have access to this content.