The precision of parts created by microfabrication processes is limited by surface roughness. Therefore, as a means of improving surface roughness, pulsed laser micropolishing on nickel was examined numerically and experimentally. A one-dimensional finite element method model was used to estimate the melt depth and duration for single 50–300 ns laser pulses. The critical frequency was introduced to predict the effectiveness of polishing in the spatial frequency domain. A 1064 nm Nd:YAG laser with 300 ns pulses was used to experimentally investigate pulsed laser polishing on microfabricated nickel samples with microscale line features. A microfabricated sample with 2.5μm wide and 0.2μm high lines spaced 5μm apart and one with 5μm wide and 0.38μm high lines spaced 10μm apart were polished with 300 ns long pulses of 47.2J/cm2 and 44.1J/cm2 fluences, respectively. The critical frequency for these experimental conditions was predicted and compared with the reduction in the average surface roughness measured for samples with two different spatial frequency contents. The average surface roughness of 5μm and 10μm wavelength line features were reduced from 0.112μm to 0.015μm and from 0.112μm to 0.059μm, respectively. Four regimes of pulsed laser micropolishing are identified as a function of laser fluence for a given pulse width: (1) at low fluences no polishing occurs due to insufficient melting, (2) moderate fluences allow sufficient melt time for surface wave damping and significant smoothing occurs, (3) increasing fluence reduces smoothing, and (4) high fluences cause roughening due to large recoil pressure and ablation. Significant improvements in average surface roughness can be achieved by pulsed laser micropolishing if the dominant frequency content of the original surface features is above the critical spatial frequency for polishing.

1.
Gietzelt
,
T.
,
Jacobi
,
O.
,
Piotter
,
V.
,
Ruprecht
,
R.
, and
Hausselt
,
J.
, 2004, “
Development of a Micro Annular Gear Pump by Micro Powder Injection Molding
,”
J. Mater. Sci.
,
39
, pp.
2113
2119
. 0022-2461
2.
Tay
,
B. Y.
,
Liu
,
L.
,
Loh
,
N. H.
,
Tor
,
S. B.
,
Murakoshi
,
Y.
, and
Maeda
,
R.
, 2005, “
Surface Roughness of Microstructured Component Fabricated by μMIM
,”
Mater. Sci. Eng., A
,
396
, pp.
311
319
. 0921-5093
3.
Liu
,
L.
,
Loh
,
N. H.
,
Tay
,
B. Y.
,
Tor
,
S. B.
,
Murakoshi
,
Y.
, and
Maeda
,
R.
, 2007, “
Effects of Thermal Debinding on Surface Roughness in Micro Powder Injection Molding
,”
Mater. Lett.
0167-577X,
61
, pp.
809
812
.
4.
Supriadi
,
S.
,
Baek
,
E. R.
,
Choi
,
C. J.
, and
Lee
,
B. T.
, 2007, “
Binder System for STS 316 Nanopowder Feedstocks in Micro-Metal Injection Molding
,”
J. Mater. Process. Technol.
,
187–188
, pp.
270
273
. 0924-0136
5.
Hupert
,
M. L.
,
Guy
,
W. J.
,
Llopis
,
S. D.
,
Shadpour
,
H.
,
Rani
,
S.
,
Nikitopoulos
,
D. E.
, and
Soper
,
S. A.
, 2006, “
Evaluation of Micromilled Metal Mold Masters for the Replication of Microchip Electrophoresis Devices
,”
Microfluid. Nanofluid.
1613-4982,
3
, pp.
1
11
.
6.
Bereznai
,
M.
,
Pelsöczi
,
I.
,
Tóth
,
Z.
,
Turzó
,
K.
,
Radnai
,
M.
,
Bor
,
Z.
, and
Fazekas
,
A.
, 2003, “
Surface Modifications Induced by ns and Sub-ps Excimer Laser Pulses on Titanium Implant Material
,”
Biomaterials
,
24
, pp.
4197
4203
. 0142-9612
7.
Kim
,
Y. G.
,
Ryu
,
J. K.
,
Kim
,
D. J.
,
Kim
,
H. J.
,
Lee
,
S.
,
Cha
,
B. H.
,
Cha
,
H.
, and
Kim
,
C. J.
, 2004, “
Microroughness Reduction of Tungsten Films by Laser Polishing Technology With a Line Beam
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
43
(
4A
), pp.
1315
1322
.
8.
Pendleton
,
W. E.
,
Williams
,
G. P.
,
Williams
,
R. T.
,
Wu
,
J. C.
,
Cvijanovich
,
G. B.
,
Joyce
,
J. L.
, and
McCleaf
,
M.
, 1993, “
Scanning Tunneling Microscopy of Nickel Surface Features Before and After Rapid Melting by Excimer Laser
,”
AMP Journal of Technology
,
3
, pp.
75
84
.
9.
Willenborg
,
E.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
, 2003, “
Polishing by Laser Radiation
,”
Proceedings of the Second International WLT Conference on Lasers in Manufacturing
, Munich, Germany, pp.
297
300
.
10.
Ramos-Grez
,
J. A.
, and
Bourell
,
D. L.
, 2004, “
Reducing Surface Roughness of Metallic Freeform-Fabricated Parts Using Non-Tactile Finishing Methods
,”
Int. J. Mater. Prod. Technol.
0268-1900,
21
(
4
), pp.
297
316
.
11.
Lamikiz
,
A.
,
Sánchez
,
J. A.
,
López de Lacalle
,
L. N.
, and
Arana
,
J. L.
, 2007, “
Laser Polishing of Parts Build Up by Selective Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
, pp.
2040
2050
. 0890-6955
12.
Wang
,
H. Y.
,
Bourell
,
D. L.
, and
Beaman
,
J. J.
, 2003, “
Laser Polishing of Silica Slotted Rods
,”
Mater. Sci. Technol.
,
19
, pp.
382
387
. 0267-0836
13.
Martan
,
J.
,
Cibulka
,
O.
, and
Semmar
,
N.
, 2006, “
Nanosecond Pulse Laser Melting Investigation by IR Radiometry and Reflection-Based Methods
,”
Appl. Surf. Sci.
0169-4332,
253
, pp.
1170
1177
.
14.
Tuckerman
,
D. B.
, and
Weisberg
,
A. H.
, 1986, “
Planarization of Gold and Aluminum Thin Films Using a Pulsed Laser
,”
IEEE Electron Device Lett.
,
7
, pp.
1
4
. 0741-3106
15.
Marella
,
P. F.
,
Tuckerman
,
D. B.
, and
Pease
,
R. F.
, 1989, “
Modeling of Laser Planarization of Thin Metal Films
,”
Appl. Phys. Lett.
0003-6951,
54
(
12
), pp.
1109
1111
.
16.
Mai
,
T. A.
, and
Lim
,
G. C.
, 2004, “
Micromelting and Its Effects on Surface Topography and Properties in Laser Polishing of Stainless Steel
,”
J. Laser Appl.
1042-346X,
16
(
4
), pp.
221
228
.
17.
Shao
,
T.
,
Hua
,
M.
,
Tam
,
H.
, and
Cheung
,
H.
, 2005, “
An Approach to Modelling of Laser Polishing of Metals
,”
Surf. Coat. Technol.
,
197
, pp.
77
84
. 0257-8972
18.
Nowak
,
K.
,
Baker
,
H.
, and
Hall
,
D.
, 2006, “
Efficient Laser Polishing of Silica Micro-Optic Components
,”
Appl. Opt.
0003-6935,
45
(
1
), pp.
162
171
.
19.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1959,
Fluid Mechanics
,
Pergamon
,
Oxford
, Chap. 7, pp.
237
240
.
20.
Krishnan
,
S.
,
Hansen
,
G. P.
,
Hauge
,
R. H.
, and
Margrave
,
J. L.
, 1990, “
Spectral Emissivities and Optical Properties of Electromagnetically Levitated Liquid Metals as Functions of Temperature and Wavelength
,”
High Temp. Sci.
,
29
, pp.
17
52
. 0018-1536
21.
Boneberg
,
J.
,
Bischof
,
J.
, and
Leiderer
,
P.
, 2000, “
Nanosecond Time-Resolved Reflectivity Determination of the Melting of Metals Upon Pulsed Laser Annealing
,”
Opt. Commun.
0030-4018,
174
, pp.
145
149
.
22.
Rolph
,
W. D.
, III
, and
Bathe
,
K. J.
, 1982, “
An Efficient Algorithm for Analysis of Nonlinear Heat Transfer With Phase Changes
,”
Int. J. Numer. Methods Eng.
0029-5981,
18
, pp.
119
134
.
23.
Roose
,
J.
, and
Storrer
,
O.
, 1984, “
Modelization of Phase Changes by Fictitious Heat Flow
,”
Int. J. Numer. Methods Eng.
,
20
, pp.
217
225
. 0029-5981
24.
Huang
,
H. C.
, and
Usmani
,
A. S.
, 1994,
Finite Element Analysis for Heat Transfer
,
Springer-Verlag
,
London
, Chap. 5, pp.
63
83
.
25.
Touloukian
,
V. S.
, and
DeWitt
,
D. P.
, 1970, “
Specific Heat of Metallic Elements and Alloys, Curves 1, 2, and 10
,”
Thermophysical Properties of Matter
, Vol.
4
,
IFI/Plenum
,
New York
, p.
146
.
26.
Touloukian
,
V. S.
, and
DeWitt
,
D. P.
, 1970, “
Thermal Conductivity of Metallic Elements and Alloys
,”
Thermophysical Properties of Matter
, Vol.
1
,
IFI/Plenum
,
New York
, p.
244
.
27.
Pottlacher
,
G.
,
Jäger
,
H.
, and
Neger
,
T.
, 1987, “
Thermophysical Measurements on Liquid Iron and Nickel
,”
High Temp. - High Press.
,
19
, pp.
19
27
. 0018-1544
28.
Iida
,
T.
, and
Guthrie
,
R. I. L.
, 1988,
The Physical Properties of Liquid Metals
,
Clarendon
,
Oxford
, Chap. 4, pp.
90
91
.
29.
Bolz
,
R. E.
, and
Tuve
,
G. L.
, 1973,
CRC Handbook of Tables for Applied Engineering Science
,
CRC
,
Boca Raton, FL
, Chap. 1, p.
119
.
30.
Smithells
,
C. J.
, 2004,
Smithells Metals Reference Book
,
Elsevier
,
New York
/
Butterworth–Heinemann
,
Boston, MA
, Chap. 14.
31.
Doná Dalle Rose
,
L. F.
, and
Miotello
,
A.
, 1980, “
Simple Approximate Analytical Expressions for the Liquid-Solid Interface Motion and Heating and Cooling Rates in an Al Sample Irradiated by a Nanosecond Laser Pulse
,”
Radiat. Eff.
0033-7579,
53
, pp.
19
24
.
32.
Brinksmeier
,
E.
,
Riemer
,
O.
,
Gessenharter
,
A.
, and
Autschbach
,
L.
, 2004, “
Polishing of Structured Moulds
,”
CIRP Ann.
0007-8506,
53
(
1
), pp.
247
250
.
33.
Touloukian
,
V. S.
, and
DeWitt
,
D. P.
, 1970, “
Thermal Radiative Properties of Metallic Elements and Alloys, Curve 10
,”
Thermophysical Properties of Matter
, Vol.
7
,
IFI/Plenum
,
New York
, pp.
454
456
.
34.
Torrisi
,
L.
,
Andò
,
L.
,
Gammino
,
S.
,
Kràsa
,
J.
, and
Làska
,
L.
, 2001, “
Ion and Neutral Emission From Pulsed Laser Irradiation of Metals
,”
Nucl. Instrum. Methods Phys. Res. B
0168-583X,
184
, pp.
327
336
.
35.
Singh
,
R. K.
, and
Viatella
,
J.
, 1994, “
Estimation of Plasma Absorption Effects During Pulsed Laser Ablation of High-Critical-Temperature Superconductors
,”
J. Appl. Phys.
0021-8979,
75
(
2
), pp.
1204
1206
.
36.
Song
,
K. H.
, and
Xu
,
X.
, 1997, “
Mechanisms of Absorption in Pulsed Excimer Laser-Induced Plasma
,”
Appl. Phys. A: Mater. Sci. Process.
0947-8396,
65
(
4–5
), pp.
477
485
.
37.
Rajurkar
,
K. P.
,
Levy
,
G.
,
Malshe
,
A.
,
Sundaram
,
M. M.
,
McGeough
,
J.
,
Hu
,
X.
,
Resnick
,
R.
, and
DeSilva
,
A.
, 2006, “
Micro and Nano Machining by Electro-Physical and Chemical Processes
,”
CIRP Ann.
0007-8506,
55
(
2
), pp.
643
666
.
You do not currently have access to this content.