The springback phenomenon is defined as elastic recovery of the stresses produced during the forming of a material. An accurate prediction of the springback puts high demands on the material modeling during the forming simulation, as well as during the unloading simulation. In classic plasticity theory, the unloading of a material after plastic deformation is assumed to be linearly elastic with the stiffness equal to Young’s modulus. However, several experimental investigations have revealed that this is an incorrect assumption. The unloading and reloading stress–strain curves are in fact not even linear, but slightly curved, and the secant modulus of this nonlinear curve deviates from the initial Young’s modulus. More precisely, the secant modulus is degraded with increased plastic straining of the material. The main purpose of the present work has been to formulate a constitutive model that can accurately predict the unloading of a material. The new model is based on the classic elastic-plastic framework, and works together with any yield criterion and hardening evolution law. To determine the parameters of the new model, two different tests have been performed: unloading/reloading tests of uniaxially stretched specimens, and vibrometric tests of prestrained sheet strips. The performance of the model has been evaluated in simulations of the springback of simple U-bends and a drawbead example. Four different steel grades have been studied in the present investigation.

References

1.
Eggertsen
,
P. A.
, and
Mattiasson
,
K.
, 2010, “
On Constitutive Modelling for Springback Analysis
,”
Int. J. Mech. Sci.
,
52
, pp.
804
818
.
2.
Eggertsen
,
P. A.
, and
Mattiasson
,
K.
, 2009, “
On the Modelling of the Bending-unbending Behaviour for Accurate Springback Predictions
,”
Int. J. Mech. Sci.
,
51
, pp.
547
563
.
3.
Eggertsen
,
P. A.
, 2009, “
Prediction of Springback in Sheet Metal Forming, With Emphasis on Material Modeling
,” Licentiate thesis, Chalmers University of Technology, Gothenburg, Sweden.
4.
Eggertsen
,
P. A.
, and
Mattiasson
,
K.
, 2010, “
An Efficient Inverse Approach for Material Hardening Parameter Identification From a Three-Point Bending Test
,”
Eng. Comput.
,
26
, pp.
159
170
.
5.
Yamaguchi
,
K.
,
Adachi
,
H.
, and
Takakura
,
N.
, 1998, “
Effects of Plastic Strain and Strain Path on Young’s Modulus of Sheet Metals
,”
Met. Mater.
,
4
, pp.
420
425
.
6.
Morestin
,
F.
, and
Boivin
,
M.
, 1996, “
On the Necessity of Taking into Account the Variation in the Young Modulus with Plastic Strain in Elastic-plastic Software
,”
Nucl. Eng. Des.
,
162
, pp.
107
116
.
7.
Morestin
,
F.
,
Boivin
,
M.
, and
Silva
,
C.
, 1996, “
Elasto Plastic Formulation Using a Kinematic Hardening Model for Springback Analysis in Sheet Metal Forming
,”
J. Mater. Process. Technol.
,
56
, pp.
619
630
.
8.
Li
,
X.
,
Yang
,
Y.
,
Wang
,
Y.
,
Bao
,
J.
, and
Li
,
S.
, 2002, “
Effect of the Material-Hardening Mode on the Springback Simulation Accuracy of V-free Bending
,”
J. Mater. Process. Technol.
,
123
, pp.
209
211
.
9.
Troiano
,
E.
,
Parker
,
A. P.
,
Underwood
,
J.
, and
Mossey
,
C.
, 2003, “
Experimental Data, Numerical Fit and Fatigue Life Calculations Relating to the Bauschinger Effect in High Strength Steels
,”
J. Pressure Vessel Technol.
,
125
, pp.
330
334
.
10.
Yang
,
M.
,
Akiyama
,
Y.
, and
Sasaki
.
T.
, 2004, “
Evaluation of Change in Material Properties Due to Plastic Deformation
,”
J. Mater. Process. Technol.
,
151
, pp.
232
236
.
11.
Zang
,
S. L.
,
Liang
,
J.
, and
Guo
,
C.
, 2007, “
A Constitutive Model for Spring-Back Prediction in Which the Change of Young’s Modulus with Plastic Deformation is Considered
,”
Int. J. Mach. Tools Manuf.
,
47
, pp.
1791
1797
.
12.
Cleveland
,
R. M.
, and
Ghosh
,
A. K.
, 2002, “
Inelastic Effects on Springback in Metals
,”
Int. J. Plast.
,
18
, pp.
769
785
.
13.
Luo
,
L.
, and
Ghosh
,
A. K.
, 2003, “
Elastic and Inelastic Recovery After Plastic Deformation of DQSK Steel Sheet
,”
J. Eng. Mater. Technol.
,
125
, pp.
237
246
.
14.
Cáceres
,
C. H.
,
Sumitomo
,
T.
, and
Veidt
,
M.
, 2003, “
Pseudoelastic Behavior of Cast Magnesium AZ91 Alloy Under Cyclic Loading-unloading
,”
Acta Mater.
,
51
, pp.
6211
6218
.
15.
Pérez
,
R.
,
Benito
,
J. A.
, and
Prado
,
J. M.
, 2005, “
Study of the Inelastic Response of TRIP Steels after Plastic Deformation
,”
ISIJ Int.
,
45
, pp.
1925
1933
.
16.
Zhu
,
H.
,
Huang
,
L.
, and
Wong
,
C.
, 2004, “
Unloading Modulus on Springback in Steels
,” SAE paper No. 2004-01-1050, SAE, Inc. 2004.
17.
Levy
,
B. S.
,
Van Tyne
,
C. J.
,
Moon
,
Y. H.
, and
Mikalsen
,
C.
, 2006 “
The Effective Unloading Modulus for Automotive Sheet Steels
,” SAE paper No. 2006-01-0146, SAE, Inc. 2006.
18.
Thibaud
,
S.
,
Boudeau
,
N.
, and
Gelin
,
J. C.
, “
Coupling Effects of Hardening and Damage Necking and Bursting Conditions in Sheet Metal Forming
,”
Int. J. Damage Mech.
,
13
, pp.
107
122
.
19.
Halilovič
,
M.
,
Vrh
,
M.
, and
Štok
,
B.
, “
Impact of Elastic Modulus Degradation on Springback in Sheet Metal Forming
,”
Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes, Porto, Portugal, AIP Conf. Proc.
,
908
, pp.
925
930
.
20.
Halilovič
,
M.
,
Vrh
,
M.
, and
Štok
,
B.
, 2009, “
Prediction of Elastic Strain Recovery of a Formed Steel Sheet Considering Stiffness Degradation
,”
Meccanica
,
44
, pp.
321
338
.
21.
Vrh
,
M.
,
Halilovič
,
M.
,
Mišič
,
M.
, and
Štok
,
B.
, 2008, “
Strain Path Dependent Stiffness Degradation of a Loaded Sheet
,”
Int. J. Mater. Form.
,
1
, pp.
297
300
.
22.
Vrh
,
M.
,
Halilovič
,
M.
,
Starman
,
B.
, and
Štok
,
B.
, 2009, “
Modelling of Springback in Sheet Metal Forming
,”
Int. J. Mater. Form.
,
2
, pp.
825
828
.
23.
Xia
,
C.
, 2005, “
Modeling Pseudo-elastic Behavior of Springback
,”
Power-Point presentation at NUMISHEET 2005—the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes
, Detroit, US.
24.
AUTOFORM 4.2 Software Manual 2010.
25.
Kubli
,
W.
,
Krasovskyy
,
A.
, and
Sester
,
M.
, 2008, “
Modeling of Reverse Loading Effects Including Workhardening Stagnation and Early Re-plastification
,”
Int. J. Mater. Form.
,
1
, pp.
145
148
.
26.
Kubli
,
W.
,
Krasovskyy
,
A.
, and
Sester
,
M.
, 2008, “
Advance Modeling of Reverse Loading Effects for Sheet Metal Forming Processes
,”
Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes
,
Interlaken
,
Switzerland
, pp.
479
484
.
27.
Kubli
,
W.
,
Krasovskyy
,
A.
, and
Sester
,
M.
, 2009, “
Improvement of the Springback Prediction by Advanced Modeling of the Bauschinger Effect
,”
Proceedings of the 3rd Forming Technology Forum
,
Zurich
,
Switzerland
, pp.
77
82
.
28.
Yoshida
,
F.
, and
Uemori
,
T.
, 2002, “
A Model of Large-Strain Cyclic Plasticity Describing the Baushinger Effect and Workhardening Stagnation
,”
Int. J. Plast.
,
18
, pp.
661
686
.
29.
Yoshida
,
F.
,
Uemori
,
T.
, and
Fujiwara
,
K.
, 2002, “
Elastic-Plastic Behavior of Steel Sheets Under In-plane Cyclic Tension-Compression at Large Strain
,”
Int. J. Plast.
,
18
, pp.
633
659
.
30.
Sigvant
,
M.
,
Mattiassson
,
K.
,
Vegter
,
H.
, and
Thilderkvist
,
P.
, 2009, “
A Viscous Pressure Bulge Test for the Determination of a Plastic ardening Curve and Equibiaxial Material Data
,”
Int. J. Mater. Form.
,
4
, pp.
235
242
.
31.
Banabic
,
D.
,
Aretz
,
H.
,
Comsa
,
D. S.
, and
Paraianu
,
L.
, 2005, “
An Improved Analytical Description of Orthotropy in Metallic Sheets
,”
Int. J. Plast.
,
21
, pp.
493
512
.
32.
Barlat
,
F.
,
Brem
,
J. C.
,
Yoon
,
J. W.
,
Chung
,
K.
,
Dick
,
R. E.
,
Lege
,
D. J.
,
Pourboghrat
,
F.
,
Choi
,
S. H.
, and
Chu
,
E.
, 2003, “
Plane Stress Yield Function for Aluminum Alloy Sheets—Part I: Theory
,”
Int. J. Plast.
,
19
, pp.
1297
1319
.
33.
Aretz
,
H.
, 2005, “
A Non-Quadratic Plane Stress Yield Function for Orthotropic Sheet Metals
,”
J. Mater. Process. Technol.
,
168
, pp.
1
9
.
34.
Mattiasson
,
K.
, and
Sigvant
,
M.
, 2008, “
An Evaluation of Some Recent Yield Criteria for Industrial Simulation of Sheet Forming Processes
,”
Int. J. Mech. Sci.
,
50
, pp.
774
787
.
35.
Logan
,
R. W.
, and
Hosford
,
W. F.
, 1980, “
Upper-bound Anisotropic Yield Locus Calculations Assuming (111)-pencil Glide
,”
Int. J. Mech. Sci.
,
27
, pp.
419
430
.
36.
Yoshida
,
F.
, and
Uemori
,
T.
, 2003, “
A Model of Large-Strain Cyclic Plasticity and its Application to Springback Simulation
,”
Int. J. Mech. Sci.
,
45
, pp.
1687
1702
.
37.
RFDA system 23, version 6.3.0 manual, Integrated Material Control Engineering, Diepenbeek, Belgium, 2006.
38.
Hahn
,
B.
, and
Valentine
,
D. T.
, 2007,
Essential Matlab for Engineers and Scientists
, 3rd ed.,
Elsiver Ltd., London
.
39.
Ziegler
,
H.
, 1959, “
A Modification of Prager’s ardening Rule
,”
Q. Appl. Math.
,
17
, pp.
55
65
.
40.
Mróz
,
Z.
, 1967, “
On the Description of Anisotropic Workhardening
,”
J. Mech. Phys. Sol.
,
15
, pp.
163
167
.
41.
Mattiasson
,
K.
,
Strange
,
A.
,
Thilderkvist
,
P.
, and
Samuelsson
,
A.
, 1995,
Simulation of Springback in Sheet Metal Forming
,
Proc. NUMIFORM’95
, pp.
115
124
.
42.
Larsson
,
M.
, 2009, “
Computational Characterization of Drawbeads. A Basic Modeling Method for Data Generation
,”
J. Mater. Process. Technol.
,
209
, pp.
376
386
.
43.
LS-DYNA keyword user’s manual, Version 971, Livermore Software technology corporation (LSTC), 2007, Vol. I.
You do not currently have access to this content.