This research evaluates the fatigue properties of Ti-6Al-4V specimens and components produced by Electron Beam additive manufacturing. It was found that the fatigue performance of specimens produced by additive manufacturing is significantly lower than that of wrought material due to defects such as porosity and surface roughness. However, evaluation of an actual component subjected to design fatigue loads did not result in premature failure as anticipated by specimen testing. Metallography, residual stress, static strength and elongation, fracture toughness, crack growth, and the effect of post processing operations such as machining and peening on fatigue performance were also evaluated.
Issue Section:
Research Papers
References
1.
Kruth
, J. P.
, Leu
, M. C.
, and Nakagawa
, T.
, 1998
, “Progress in Additive Manufacturing and Rapid Prototyping
,” CIRP Ann.
, 47
(2
), pp. 525
–540
.10.1016/S0007-8506(07)63240-52.
Levy
, G. N.
, Schindel
, R.
, and Kruth
, J. P.
, 2003
, “Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives
,” CIRP Ann.
, 52
(2
), pp. 589
–609
.10.1016/S0007-8506(07)60206-63.
Murr
, L. E.
, Esquivel
, E. V.
, Quinones
, S. A.
, Gaytan
, S. M.
, Lopez
, M. I.
, Martinez
, E. Y.
, Medina
, F.
, Hernandez
, D. H.
, Martinez
, E.
, Martinez
, J. L.
, Stafford
, S. W.
, Brown
, D. K.
, Hoppe
, T.
, Meyers
, W.
, Lindhe
, U.
, and Wicker
, R. B.
, 2009
, “Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti-6Al-4V Biomedical Prototypes Compared to Wrought Ti-6Al-4V
,” Mater. Charact.
, 60
, pp. 96
–105
.10.1016/j.matchar.2008.07.0064.
Murr
, L. E.
, Gaytan
, S. M.
, Ceylan
, A.
, Martinez
, E.
, Martinez
, J. L.
, Hernandez
, D. H.
, Machado
, B. I.
, Ramirez
, D. A.
, Medina
, F.
, Collins
, S.
, and Wicker
, R. B.
, 2010
, “Characterization of Titanium Aluminide Alloy Components Fabricated by Additive Manufacturing Using Electron Beam Melting
,” Acta Mater.
, 58
(5
), pp. 1887
–1894
.10.1016/j.actamat.2009.11.0325.
Hrabe
, N.
, and Quinn
, T.
, 2013
, “Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated Using Electron Beam Melting (EBM), Part 1: Distance From Build Plate and Part Size
,” Mater. Sci. Eng., A
, 537
, pp. 264
–270
.10.1016/j.msea.2013.02.0646.
Hrabe
, N.
, and Quinn
, T.
, 2013
, “Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated Using Electron Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location
,” Mater. Sci. Eng., A
, 573
, pp. 271
–277
.10.1016/j.msea.2013.02.0657.
Facchini
, L.
, Magalini
, E.
, Robotti
, P.
, and Molinari
, A.
, 2009
, “Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Electron Beam Melting of Pre-Alloyed Powders
,” Rapid Prototyping J.
, 15
(3
), pp. 171
–178
.
10.1108/135525409109602628.
Chan
, K.
, Koike
, M.
, Mason
, R.
, and Okabe
, T.
, 2013
, “Fatigue Life of Titanium Alloys Fabricated by Additive Manufacturing Techniques for Dental Implants
,” Metall. Mater. Trans. A
, 44A
, pp. 1010
–1022
.10.1007/s11661-012-1470-49.
Harrysson
, O.
, Deaton
, B.
, Bardin
, J.
, West
, H.
, Cansizoglu
, O.
, Cormier
, D.
, and Little
, D. M.
, 2005
, “Evaluation of Titanium Implant Components Directly Fabricated Through Electron Beam Melting Technology
,” Adv. Mater. Process.
, 163
(7
), pp. 72
–77
.10.
Parthasarathy
, J.
, Starly
, B.
, Raman
, S.
, and Christensen
, A.
, 2010
, “Mechanical Evaluation of Porous Titanium (Ti6Al4V) Structures With Electron Beam Melting (EBM)
,” J. Mech. Behav. Biomed. Mater.
, 3
, pp. 249
–259
.10.1016/j.jmbbm.2009.10.00611.
Heinl
, P.
, Rottmair
, A.
, Körner
, A.
, and Singer
, R. F.
, 2007
, “Cellular Titanium by Selective Electron Beam Melting
,” Adv. Eng. Mater.
, 9
(5
), pp. 360
–364
.10.1002/adem.20070002512.
Koike
, M.
, Greer
, P.
, Owen
, K.
, Lilly
, G.
, Murr
, L.
, Gaytan
, S.
, Martinez
, E.
, and Okabe
, T.
, 2011
, “Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting
,” Materials
, 4
, pp. 1776
–1792
.10.3390/ma410177613.
Thijs
, L.
, Verhaeghe
, F.
, Craeghs
, T.
, Humbeeck
, J.
, and Kruth
, J.
, 2010
, “A Study of the Microstructual Evolution During Selective Laser Melting of Ti-6Al-4V
,” Acta Mater.
, 58
, pp. 3303
–3312
.10.1016/j.actamat.2010.02.00414.
Facchini
, L.
, Magalini
, E.
, Robotti
, P.
, Molinari
, A.
, Hoeges
, S.
, and Wissenbach
, K.
, 2010
, “Ductility of a Ti-6 Al-4 V Alloy Produced by Selective Laser Melting of Prealloyed Powders
,” Rapid Prototyping J.
, 16
, pp. 450
–459
.10.1108/1355254101108337115.
Kobryn
, P.
, Moore
, E.
, and Semiatin
, S.
, 2000
, “The Effect of Laser Power and Traverse Speed on Microstructure, Porosity, and Build Height in Laser-Deposited Ti-6Al-4V
,” Scr. Mater.
, 43
, pp. 299
–305
.10.1016/S1359-6462(00)00408-516.
Kobryn
, P.
, and Semiatin
, S.
, 2001
, “The Laser Additive Manufacture of Ti-6Al-4V
,” JOM
, 53
, pp. 40
–42
.10.1007/s11837-001-0068-x17.
Kelly
, S.
, and Kampe
, S.
, 2004
, “Microstructural Evolution in Laser-Deposited Multilayer Ti-6Al-4V Builds: Part I. Microstructural Characterization
,” Metall. Mater. Trans. A
, 35
, pp. 1861
–1867
.10.1007/s11661-004-0094-818.
Mercelis
, P.
, and Kruth
, J.
, 2006
, “Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,” Rapid Prototyping J.
, 12
, pp. 254
–265
.10.1108/1355254061070701319.
Shiomi
, M.
, Osakada
, K.
, Nakamura
, K.
, Yamashita
, T.
, and Abe
, F.
, 2004
, “Residual Stress Within Metallic Model Made by Selective Laser Melting Process
,” CIRP Ann.
, 53
(1
), pp. 195
–198
.10.1016/S0007-8506(07)60677-520.
Leuders
, S.
, Thone
, M.
, Riemer
, A.
, Niendorf
, T.
, Troster
, T.
, Richard
, H.
, and Maier
, J.
, 2013
, “On the Mechanical Behavior of Titanium Alloy Tial6v4 Manufacture by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance
,” Int. J. Fatigue
, 48
, pp. 300
–307
.10.1016/j.ijfatigue.2012.11.01121.
Baufeld
, B.
, Brandl
, E.
, and Biest
, O.
, 2011
, “Wire Based Additive Layer Manufacturing: Comparison of Microstructural and Mechanical Properties of Ti-6Al-4 V Components Fabricated by Laser-Beam Deposition and Shaped Metal Deposition
,” J. Mater. Process. Technol.
, 211
, pp. 1146
–1158
.10.1016/j.jmatprotec.2011.01.01822.
Brandl
, E.
, Baufeld
, B.
, Leynes
, C.
, and Gault
, R.
, 2010
, “Additive Manufactured Ti-6Al-4V Using Welding Wire: Comparions of Laser and Arc Beam Deposition and Evaluation With Respect to Aerospace Material Specifications
,” Phys. Procedia
, 5
, pp. 595
–606
.10.1016/j.phpro.2010.08.08723.
Santos
, E. C.
, Osakada
, K.
, Shiomi
, M.
, Kitamura
, Y.
, and Abe
, F.
, 2004
, “Microstructure and Mechanical Properties of Pure Titanium Models Fabricated by Selective Laser Melting
,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
, 218
(7
), pp. 711
–719
.10.1243/095440604131954524.
Arcam AB, “
The Future in Implant Manufacturing
,” http://www.arcam.com/wp-content/uploads/Arcam-A1.pdf25.
Boyer
, R.
, Welsch
, G.
, and Collings
, E. W.
, 1994
, Materials and Properties Handbook Titanium Alloys
, ASM International
, Materials Park, OH, pp. 517
–548
.26.
Edwards
, P.
, Petersen
, M.
, Ramulu
, M.
, and Boyer
, R.
, 2010
, “Mechanical Performance of Heat Treated Ti-6Al-4V Friction Stir Welds
,” Key Eng. Mater.
, 436
, pp. 213
–221
.10.4028/www.scientific.net/KEM.436.21327.
Cameron
, D. W.
, and Hoeppner
, D. W.
, 1996
, “Fatigue Properties in Engineering
,” ASM Handbook: Fatigue and Fracture
, ASM International, Materials Park, OH, Vol. 19
, p. 15
.Copyright © 2013 by ASME
You do not currently have access to this content.