This research evaluates the fatigue properties of Ti-6Al-4V specimens and components produced by Electron Beam additive manufacturing. It was found that the fatigue performance of specimens produced by additive manufacturing is significantly lower than that of wrought material due to defects such as porosity and surface roughness. However, evaluation of an actual component subjected to design fatigue loads did not result in premature failure as anticipated by specimen testing. Metallography, residual stress, static strength and elongation, fracture toughness, crack growth, and the effect of post processing operations such as machining and peening on fatigue performance were also evaluated.

References

1.
Kruth
,
J. P.
,
Leu
,
M. C.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann.
,
47
(
2
), pp.
525
540
.10.1016/S0007-8506(07)63240-5
2.
Levy
,
G. N.
,
Schindel
,
R.
, and
Kruth
,
J. P.
,
2003
, “
Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives
,”
CIRP Ann.
,
52
(
2
), pp.
589
609
.10.1016/S0007-8506(07)60206-6
3.
Murr
,
L. E.
,
Esquivel
,
E. V.
,
Quinones
,
S. A.
,
Gaytan
,
S. M.
,
Lopez
,
M. I.
,
Martinez
,
E. Y.
,
Medina
,
F.
,
Hernandez
,
D. H.
,
Martinez
,
E.
,
Martinez
,
J. L.
,
Stafford
,
S. W.
,
Brown
,
D. K.
,
Hoppe
,
T.
,
Meyers
,
W.
,
Lindhe
,
U.
, and
Wicker
,
R. B.
,
2009
, “
Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti-6Al-4V Biomedical Prototypes Compared to Wrought Ti-6Al-4V
,”
Mater. Charact.
,
60
, pp.
96
105
.10.1016/j.matchar.2008.07.006
4.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Ceylan
,
A.
,
Martinez
,
E.
,
Martinez
,
J. L.
,
Hernandez
,
D. H.
,
Machado
,
B. I.
,
Ramirez
,
D. A.
,
Medina
,
F.
,
Collins
,
S.
, and
Wicker
,
R. B.
,
2010
, “
Characterization of Titanium Aluminide Alloy Components Fabricated by Additive Manufacturing Using Electron Beam Melting
,”
Acta Mater.
,
58
(
5
), pp.
1887
1894
.10.1016/j.actamat.2009.11.032
5.
Hrabe
,
N.
, and
Quinn
,
T.
,
2013
, “
Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated Using Electron Beam Melting (EBM), Part 1: Distance From Build Plate and Part Size
,”
Mater. Sci. Eng., A
,
537
, pp.
264
270
.10.1016/j.msea.2013.02.064
6.
Hrabe
,
N.
, and
Quinn
,
T.
,
2013
, “
Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti-6Al-4V) Fabricated Using Electron Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location
,”
Mater. Sci. Eng., A
,
573
, pp.
271
277
.10.1016/j.msea.2013.02.065
7.
Facchini
,
L.
,
Magalini
,
E.
,
Robotti
,
P.
, and
Molinari
,
A.
,
2009
, “
Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Electron Beam Melting of Pre-Alloyed Powders
,”
Rapid Prototyping J.
,
15
(
3
), pp.
171
178
.
10.1108/13552540910960262
8.
Chan
,
K.
,
Koike
,
M.
,
Mason
,
R.
, and
Okabe
,
T.
,
2013
, “
Fatigue Life of Titanium Alloys Fabricated by Additive Manufacturing Techniques for Dental Implants
,”
Metall. Mater. Trans. A
,
44A
, pp.
1010
1022
.10.1007/s11661-012-1470-4
9.
Harrysson
,
O.
,
Deaton
,
B.
,
Bardin
,
J.
,
West
,
H.
,
Cansizoglu
,
O.
,
Cormier
,
D.
, and
Little
,
D. M.
,
2005
, “
Evaluation of Titanium Implant Components Directly Fabricated Through Electron Beam Melting Technology
,”
Adv. Mater. Process.
,
163
(
7
), pp.
72
77
.
10.
Parthasarathy
,
J.
,
Starly
,
B.
,
Raman
,
S.
, and
Christensen
,
A.
,
2010
, “
Mechanical Evaluation of Porous Titanium (Ti6Al4V) Structures With Electron Beam Melting (EBM)
,”
J. Mech. Behav. Biomed. Mater.
,
3
, pp.
249
259
.10.1016/j.jmbbm.2009.10.006
11.
Heinl
,
P.
,
Rottmair
,
A.
,
Körner
,
A.
, and
Singer
,
R. F.
,
2007
, “
Cellular Titanium by Selective Electron Beam Melting
,”
Adv. Eng. Mater.
,
9
(
5
), pp.
360
364
.10.1002/adem.200700025
12.
Koike
,
M.
,
Greer
,
P.
,
Owen
,
K.
,
Lilly
,
G.
,
Murr
,
L.
,
Gaytan
,
S.
,
Martinez
,
E.
, and
Okabe
,
T.
,
2011
, “
Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting
,”
Materials
,
4
, pp.
1776
1792
.10.3390/ma4101776
13.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Humbeeck
,
J.
, and
Kruth
,
J.
,
2010
, “
A Study of the Microstructual Evolution During Selective Laser Melting of Ti-6Al-4V
,”
Acta Mater.
,
58
, pp.
3303
3312
.10.1016/j.actamat.2010.02.004
14.
Facchini
,
L.
,
Magalini
,
E.
,
Robotti
,
P.
,
Molinari
,
A.
,
Hoeges
,
S.
, and
Wissenbach
,
K.
,
2010
, “
Ductility of a Ti-6 Al-4 V Alloy Produced by Selective Laser Melting of Prealloyed Powders
,”
Rapid Prototyping J.
,
16
, pp.
450
459
.10.1108/13552541011083371
15.
Kobryn
,
P.
,
Moore
,
E.
, and
Semiatin
,
S.
,
2000
, “
The Effect of Laser Power and Traverse Speed on Microstructure, Porosity, and Build Height in Laser-Deposited Ti-6Al-4V
,”
Scr. Mater.
,
43
, pp.
299
305
.10.1016/S1359-6462(00)00408-5
16.
Kobryn
,
P.
, and
Semiatin
,
S.
,
2001
, “
The Laser Additive Manufacture of Ti-6Al-4V
,”
JOM
,
53
, pp.
40
42
.10.1007/s11837-001-0068-x
17.
Kelly
,
S.
, and
Kampe
,
S.
,
2004
, “
Microstructural Evolution in Laser-Deposited Multilayer Ti-6Al-4V Builds: Part I. Microstructural Characterization
,”
Metall. Mater. Trans. A
,
35
, pp.
1861
1867
.10.1007/s11661-004-0094-8
18.
Mercelis
,
P.
, and
Kruth
,
J.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
12
, pp.
254
265
.10.1108/13552540610707013
19.
Shiomi
,
M.
,
Osakada
,
K.
,
Nakamura
,
K.
,
Yamashita
,
T.
, and
Abe
,
F.
,
2004
, “
Residual Stress Within Metallic Model Made by Selective Laser Melting Process
,”
CIRP Ann.
,
53
(
1
), pp.
195
198
.10.1016/S0007-8506(07)60677-5
20.
Leuders
,
S.
,
Thone
,
M.
,
Riemer
,
A.
,
Niendorf
,
T.
,
Troster
,
T.
,
Richard
,
H.
, and
Maier
,
J.
,
2013
, “
On the Mechanical Behavior of Titanium Alloy Tial6v4 Manufacture by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance
,”
Int. J. Fatigue
,
48
, pp.
300
307
.10.1016/j.ijfatigue.2012.11.011
21.
Baufeld
,
B.
,
Brandl
,
E.
, and
Biest
,
O.
,
2011
, “
Wire Based Additive Layer Manufacturing: Comparison of Microstructural and Mechanical Properties of Ti-6Al-4 V Components Fabricated by Laser-Beam Deposition and Shaped Metal Deposition
,”
J. Mater. Process. Technol.
,
211
, pp.
1146
1158
.10.1016/j.jmatprotec.2011.01.018
22.
Brandl
,
E.
,
Baufeld
,
B.
,
Leynes
,
C.
, and
Gault
,
R.
,
2010
, “
Additive Manufactured Ti-6Al-4V Using Welding Wire: Comparions of Laser and Arc Beam Deposition and Evaluation With Respect to Aerospace Material Specifications
,”
Phys. Procedia
,
5
, pp.
595
606
.10.1016/j.phpro.2010.08.087
23.
Santos
,
E. C.
,
Osakada
,
K.
,
Shiomi
,
M.
,
Kitamura
,
Y.
, and
Abe
,
F.
,
2004
, “
Microstructure and Mechanical Properties of Pure Titanium Models Fabricated by Selective Laser Melting
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
218
(
7
), pp.
711
719
.10.1243/0954406041319545
24.
Arcam AB, “
The Future in Implant Manufacturing
,” http://www.arcam.com/wp-content/uploads/Arcam-A1.pdf
25.
Boyer
,
R.
,
Welsch
,
G.
, and
Collings
,
E. W.
,
1994
,
Materials and Properties Handbook Titanium Alloys
,
ASM International
, Materials Park, OH, pp.
517
548
.
26.
Edwards
,
P.
,
Petersen
,
M.
,
Ramulu
,
M.
, and
Boyer
,
R.
,
2010
, “
Mechanical Performance of Heat Treated Ti-6Al-4V Friction Stir Welds
,”
Key Eng. Mater.
,
436
, pp.
213
221
.10.4028/www.scientific.net/KEM.436.213
27.
Cameron
,
D. W.
, and
Hoeppner
,
D. W.
,
1996
, “
Fatigue Properties in Engineering
,”
ASM Handbook: Fatigue and Fracture
, ASM International, Materials Park, OH, Vol.
19
, p.
15
.
You do not currently have access to this content.