The compression molding of precision glass lens is a near net-shape forming process for optical components fabrication. The final profile curve accuracy is one of the most crucial criterions for evaluating the quality of the molded lens. In this research, our purpose was focused on the evaluation of the molded lens curve deviation. By incorporating stress relaxation and structural relaxation model of glass, numerical simulations of the whole molding process for fabricating a planoconvex lens were conducted by utilizing the commercial software msc Marc. The relationship of the three variables, i.e., the lens curve deviation, the mold curve deviation, the gap between the lens and the lower mold, was discussed and the evolution plots with time of the three variables were obtained. Details of the thermal boundary conditions were discussed by considering the contact heat transfer behavior. Then the essentiality of a small gap between the molds and the molded lens after releasing the upper mold was demonstrated. In details, the sensitivity analysis of the processing parameters was conducted, such as the releasing temperature, the cooling rate in the annealing and fast cooling stage, respectively, and the magnitude of the hold-up force. The results showed that the glass lens curve deviation was not sensitive to the choices of the releasing temperature and the cooling rate. What's more, the results indicated that the curve deviation decreased with the hold-up force increasing. Finally, with all the details considered, the final simulation results were presented accurately with good reason.

References

1.
Jain
,
A.
,
Firestone
,
G. C.
, and
Yi
,
A. Y.
,
2005
, “
Viscosity Measurement by Cylindrical Compression for Numerical Modeling of Precision Lens Molding Process
,”
J. Am. Ceram. Soc.
,
88
(
9
), pp.
2409
2414
.10.1111/j.1551-2916.2005.00477.x
2.
Yi
,
A. Y.
, and
Jain
,
A.
,
2005
, “
Experimental and Numerical Analysis Compression Molding of Aspherical Glass Lenses—A Combined
,”
J. Am. Ceram. Soc.
,
88
(
3
), pp.
579
586
.10.1111/j.1551-2916.2005.00137.x
3.
Chen
,
Y.
,
Yi
,
A. Y.
,
Su
,
L.
,
Klocke
,
F.
, and
Pongs
,
G.
,
2008
, “
Numerical Simulation and Experimental Study of Residual Stresses in Compression Molding of Precision Glass Optical Components
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051012
.10.1115/1.2950062
4.
Tao
,
B.
,
He
,
P.
,
Shen
,
L. G.
, and
Yi
,
A.
,
2014
, “
Annealing of Compression Molded Aspherical Glass Lenses
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011008
.10.1115/1.4025395
5.
Dambon
,
O.
,
Wang
,
F.
,
Klocke
,
F.
,
Pongs
,
G.
,
Bresseler
,
B.
,
Chen
,
Y.
, and
Yi
,
A. Y.
,
2009
, “
Efficient Mold Manufacturing for Precision Glass Molding
,”
J. Vac. Sci. Technol. B
,
27
(
3
), pp.
1445
1449
.10.1116/1.3056171
6.
He
,
P.
,
Li
,
L.
,
Yu
,
J. F.
,
Huang
,
W. Y.
,
Yen
,
Y. C.
,
Lee
,
L. J.
, and
Yi
,
A. Y.
,
2013
, “
Graphene-Coated Si Mold for Precision Glass Optics Molding
,”
Opt. Lett.
,
38
(
14
), pp.
2625
2628
.10.1364/OL.38.002625
7.
Li
,
L. K.
,
He
,
P.
,
Wang
,
F.
,
Georgiadis
,
K.
,
Dambon
,
O.
,
Klocke
,
F.
, and
Yi
,
A. Y.
,
2011
, “
A Hybrid Polymer-Glass Achromatic Microlens Array Fabricated by Compression Molding
,”
J. Opt. (Bristol, U. K.)
,
13
(
5
), p.
055407
.10.1088/2040-8978/13/5/055407
8.
Huang
,
C. Y.
,
Hsiao
,
W. T.
,
Huang
,
K. C.
,
Chang
,
K. S.
,
Chou
,
H. Y.
, and
Chou
,
C. P.
,
2011
, “
Fabrication of a Double-Sided Micro-Lens Array by a Glass Molding Technique
,”
J. Micromech. Microeng.
,
21
(
8
), p.
085020
.10.1088/0960-1317/21/8/085020
9.
Sakurai
,
J.
,
Abe
,
M.
,
Ando
,
M.
,
Aono
,
Y.
, and
Hata
,
S.
,
2011
, “
Searching for Noble Ni-Nb-Zr Thin Film Amorphous Alloys for Optical Glass Device Molding Die Materials
,”
Precis. Eng.
,
35
(
4
), pp.
537
546
.10.1016/j.precisioneng.2011.05.004
10.
Chien
,
H. H.
,
Kuo
,
C. H.
, and
Huang
,
S. W.
,
2012
, “
Molding of Al2O3-Coated Chalcogenide Glass Lenses
,”
Opt. Eng.
,
51
(
3
), p.
033401
.10.1117/1.OE.51.3.033401
11.
Klocke
,
F.
,
Georgiadis
,
K.
,
Dambon
,
O.
,
Bouzakis
,
K. D.
,
Gerardis
,
S.
, and
Skordaris
,
G.
,
2012
, “
Complete Qualification Methodology for Coatings of Precision Glass Molding Tools
,”
Opt. Eng.
,
51
(
7
), p.
073401
.10.1117/1.OE.51.7.073401
12.
Mosaddegha
,
P.
,
Ziegert
,
J.
,
Iqbal
,
W.
, and
Tohme
,
Y.
,
2011
, “
Apparatus for High Temperature Friction Measurement
,”
Precis. Eng.
,
35
(
3
), pp.
473
483
.10.1016/j.precisioneng.2011.02.011
13.
Mosaddegh
,
P.
, and
Ziegert
,
J. C.
,
2011
, “
Friction Measurement in Precision Glass Molding: An Experimental Study
,”
J. Non-Cryst. Solids
,
357
(
16–17
), pp.
3221
3225
.10.1016/j.jnoncrysol.2011.05.012
14.
Yan
,
J. W.
,
Zhou
,
T. F.
,
Masuda
,
J.
, and
Kuriyagawa
,
T.
,
2009
, “
Modeling High-Temperature Glass Molding Process by Coupling Heat Transfer and Viscous Deformation Analysis
,”
Precis. Eng.
,
33
(
2
), pp.
150
159
.10.1016/j.precisioneng.2008.05.005
15.
Jain
,
A.
, and
Yi
,
A. Y.
,
2006
, “
Finite Element Modeling of Structural Relaxation During Annealing of a Precision-Molded Glass Lens
,”
ASME J. Manuf. Sci. Eng.
,
128
(
3
), pp.
683
690
.10.1115/1.2163362
16.
Ananthasayanam
,
B.
,
Joseph
,
P. F.
,
Joshi
,
D.
,
Gaylord
,
S.
,
Petit
,
L.
,
Blouin
, V
. Y.
,
Richardson
,
K. C.
,
Cler
,
D. L.
,
Stairiker
,
M.
, and
Tardiff
,
M.
,
2012
, “
Final Shape of Precision Molded Optics: Part II-Validation and Sensitivity to Material Properties and Process Parameters
,”
J. Therm. Stresses
,
35
(
7
), pp.
614
636
.10.1080/01495739.2012.674838
17.
Wang
,
F.
,
Chen
,
Y.
,
Klocke
,
F.
,
Pongs
,
G.
, and
Yi
,
A. Y.
,
2009
, “
Numerical Simulation Assisted Curve Compensation in Compression Molding of High Precision Aspherical Glass Lenses
,”
ASME J. Manuf. Sci. Eng
,
131
(
1
), p.
011014
.10.1115/1.3063652
18.
Su
,
L. J.
,
Wang
,
F.
,
He
,
P.
,
Dambon
,
O.
,
Klocke
,
F.
, and
Yi
,
A. Y.
,
2014
, “
An Integrated Solution for Mold Shape Modification in Precision Glass Molding to Compensate Refractive Index Change and Geometric Deviation
,”
Opt. Laser Eng.
,
53
, pp.
98
103
.10.1016/j.optlaseng.2013.08.016
19.
Song
,
S.
,
Yovanovich
,
M. M.
, and
Nho
,
K.
,
1992
, “
Thermal Gap Conductance—Effects of Gas-Pressure and Mechanical Load
,”
J. Thermophys. Heat Transfer
,
6
(
1
), pp.
62
68
.10.2514/3.319
20.
Jain
,
A.
, and
Yi
,
A. Y.
,
2005
, “
Numerical Modeling of Viscoelastic Stress Relaxation During Glass Lens Forming Process
,”
J. Am. Ceram. Soc.
,
88
(
3
), pp.
530
535
.10.1111/j.1551-2916.2005.00114.x
21.
Soules
,
T. F.
,
Busbey
,
R. F.
,
Rekhson
,
S. M.
,
Markovsky
,
A.
, and
Burke
,
M. A.
,
1987
, “
Finite-Element Calculation of Stresses in Glass Parts Undergoing Viscous Relaxation
,”
J. Am. Ceram. Soc.
,
70
(
2
), pp.
90
95
.10.1111/j.1151-2916.1987.tb04935.x
22.
Zhou
,
J.
,
Li
,
M. J.
, and
Shen
,
L. G.
,
2013
, “
FEM Analysis of Glass Lens Molding Press
,”
Adv. Mater. Mater. Process.
,
652–654
(
1–3
), pp.
1961
1965
.10.4028/www.scientific.net/AMR.652-654.1961
23.
Zhou
,
J.
,
Shi
,
T.
,
Hu
,
Y.
,
Ji
,
Y.
,
Li
,
M.
, and
Shen
,
L.
,
2013
, “
Numerical Simulation in Compression Molding of Glass Lens
,”
IEEE International Conference on Proceedings of the Automation Science and Engineering (CASE)
, IEEE, pp.
669
674
.
24.
MSC. Software Corporation, MSC Software Marc Volume A: Theory and User Information, pp.
562
564
.
You do not currently have access to this content.