Organ printing, among different tissue engineering innovations, is a freeform fabrication approach for making three-dimensional (3D) tissue and organ constructs using cellular spheroids or bioinks as building blocks. The capability to fabricate vascular-like tubular constructs is an important indicator of the overall feasibility of envisioned organ printing technology. In this study, vascular-like alginate tubes, which mimic typical vascular constructs, are fabricated both vertically and horizontally using drop-on-demand (DOD) inkjetting. Manufacturing-related challenges are different for the vertical and horizontal printing configurations. In general, the vertical printing configuration has instability or collapse/buckling problems and may experience some difficulty in fabricating complex constructs such as Y- or K-shaped constructs if there is no supporting material. The horizontal printing configuration may easily result in a deformed hollow cross section and may require extra effort to mitigate the undesired deformation. It is envisioned that the combination of vertical and horizontal printing provides an efficient and effective way to fabricate complex tubular constructs with both vertical and horizontal branching features.

References

1.
Mironov
,
V.
,
Boland
,
T.
,
Trusk
,
T.
,
Forgacs
,
G.
, and
Markwald
,
R. R.
,
2008
, “
Organ Printing: Computer-Aided Jet-Based 3D Tissue Engineering
,”
Trends Biotechnol.
,
21
(
4
), pp.
157
161
.10.1016/S0167-7799(03)00033-7
2.
Schiele
,
N. R.
,
Corr
,
D. T.
,
Huang
,
Y.
,
Raof
,
N. A.
,
Xie
,
Y.
, and
Chrisey
,
D. B.
,
2010
, “
Laser-Based Direct-Write Techniques for Cell Printing
,”
Biofabrication
,
2
(
3
), p.
032001
.10.1088/1758-5082/2/3/032001
3.
Riggs
,
B. C.
,
Dias
,
A. D.
,
Schiele
,
N. R.
,
Cristescu
,
R.
,
Huang
,
Y.
,
Corr
,
D. T.
, and
Chrisey
,
D. B.
,
2011
, “
Matrix-Assisted Pulsed Laser Methods for Biofabrication
,”
MRS Bull.
,
36
(
12
), pp.
1043
1050
.10.1557/mrs.2011.276
4.
Khang
,
G.
,
Kim
,
M. S.
, and
Lee
,
H. B.
,
2007
,
A Manual for Biomaterials/Scaffold Fabrication Technology
,
World Scientific Publishing Co. Pte. Ltd
.,
Singapore
.10.1142/6408
5.
Ringeisen
,
B. R.
,
Pirlo
,
R. K.
,
Wu
,
P. K.
,
Boland
,
T.
,
Huang
,
Y.
,
Sun
,
W.
,
Hamid
,
Q.
, and
Chrisey
,
D. B.
,
2013
, “
Cell and Organ Printing Turns 15: Diverse Research to Commercial Transitions
,”
MRS Bull.
,
38
(
10
), pp.
834
843
.10.1557/mrs.2013.209
6.
Deuser
,
B. K.
,
Tang
,
L.
,
Landers
,
R. G.
,
Leu
,
M. C.
, and
Hilmas
,
G. E.
,
2013
, “
Hybrid Extrusion Force-Velocity Control Using Freeze-Form Extrusion Fabrication for Functionally Graded Material Parts
,”
ASME J. Manuf. Sci.
,
135
(
4
), p.
041015
.10.1115/1.4024534
7.
Boland
,
T.
,
Tao
,
X.
,
Damon
,
B. J.
,
Manley
,
B.
,
Kesari
,
P.
,
Jalota
,
S.
, and
Bhaduri
,
S.
,
2007
, “
Drop-on-Demand Printing of Cells and Materials for Designer Tissue Constructs
,”
Mater. Sci. Eng. C
,
27
(
3
), pp.
372
376
.10.1016/j.msec.2006.05.047
8.
Nishiyama
,
Y.
,
Nakamura
,
M.
,
Henmi
,
C.
,
Yamaguchi
,
K.
,
Mochizuki
,
S.
,
Nakagawa
,
H.
, and
Takiura
,
K.
,
2009
, “
Development of a Three-Dimensional Bioprinter: Construction of Cell Supporting Structures Using Hydrogel and State-of-the-Art Inkjet Technology
,”
ASME J. Biomech. Eng.
,
131
(
3
), p.
035001
.10.1115/1.3002759
9.
Xu
,
C.
,
Chai
,
W.
,
Huang
,
Y.
, and
Markwald
,
R. R.
,
2012
, “
Scaffold-Free Inkjet Printing of Three-Dimensional Zigzag Cellular Tubes
,”
Biotechnol. Bioeng.
,
109
(
12
), pp.
3152
3160
.10.1002/bit.24591
10.
Herran
,
C. L.
,
Wang
,
W.
,
Huang
,
Y.
,
Mironov
,
V.
, and
Markwald
,
R.
,
2010
, “
Parametric Study of Acoustic Excitation-Based Glycerol-Water Microsphere Fabrication in Single Nozzle Jetting
,”
ASME J. Manuf. Sci.
,
132
(
5
), p.
051001
.10.1115/1.4002187
11.
Herran
,
C. L.
, and
Huang
,
Y.
,
2012
, “
Alginate Microsphere Fabrication Using Bipolar Wave-Based Drop-on-Demand Jetting
,”
J. Manuf. Processes
,
14
(
2
), pp.
98
106
.10.1016/j.jmapro.2011.11.001
12.
Herran
,
C. L.
,
Huang
,
Y.
, and
Chai
,
W.
,
2012
, “
Performance Evaluation of Bipolar and Tripolar Excitations During Nozzle-Jetting-Based Alginate Microsphere Fabrication
,”
J. Micromech. Microeng.
,
22
(
8
), p.
085025
.10.1088/0960-1317/22/8/085025
13.
Fathi
,
S.
, and
Dickens
,
P.
,
2012
, “
Nozzle Wetting and Instabilities During Droplet Formation of Molten Nylon Materials in an Inkjet Printhead
,”
ASME J. Manuf. Sci.
,
134
(
4
), p.
041008
.10.1115/1.4006971
14.
Fathi
,
S.
,
Dickens
,
P.
,
Khodabakhshi
,
K.
, and
Gilbert
,
M.
,
2013
, “
Microcrystal Particles Behaviour in Inkjet Printing of Reactive Nylon Materials
,”
ASME J. Manuf. Sci.
,
135
(
1
), p.
011009
.10.1115/1.4023272
15.
Norotte
,
C.
,
Marga
,
F. S.
,
Niklason
,
L. E.
, and
Forgacs
,
G.
,
2009
, “
Scaffold-Free Vascular Tissue Engineering Using Bioprinting
,”
Biomaterials
,
30
(
30
), pp.
5910
5917
.10.1016/j.biomaterials.2009.06.034
16.
Skardal
,
A.
,
Zhang
,
J.
, and
Prestwich
,
G. D.
,
2010
, “
Bioprinting Vessel-Like Constructs Using Hyaluronan Hydrogels Crosslinked With Tetrahedral Polyethylene Glycol Tetracrylates
,”
Biomaterials
,
31
(
24
), pp.
6173
6181
.10.1016/j.biomaterials.2010.04.045
17.
Xu
,
C.
,
Christensen
,
K.
,
Zhang
,
Z.
,
Huang
,
Y.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2013
, “
Predictive Compensation-Enabled Horizontal Inkjet Printing of Alginate Tubular Constructs
,”
Manuf. Lett.
,
1
(
1
), pp.
28
32
.10.1016/j.mfglet.2013.09.003
18.
Murphy
,
S. V.
,
Skardal
,
A.
, and
Atala
,
A.
,
2013
, “
Evaluation of Hydrogels for Bio-Printing Applications
,”
J. Biomed. Mater. Res. A
,
101
(
1
), pp.
272
284
.10.1002/jbm.a.34326
19.
Wang
,
C. X.
,
Cowen
,
C.
,
Zhang
,
Z.
, and
Thomas
,
C. R.
,
2005
, “
High-Speed Compression of Single Alginate Microspheres
,”
Chem. Eng. Sci.
,
60
(
23
), pp.
6649
6657
.10.1016/j.ces.2005.05.052
20.
Young
,
W. C.
, and
Budynas
,
R. G.
,
2002
,
Roark's Formulas for Stress and Strain
,
McGraw-Hill
,
New York
.
21.
Ugural
,
A. C.
, and
Fenstr
,
S. K.
,
2003
,
Advanced Strength and Applied Elasticity
,
Pearson Education
,
Upper Saddle River, NJ
.
22.
Salsac
,
A. V.
,
Zhang
,
L.
, and
Gherbezza
,
J. M.
,
2009
, “
Measurement of Mechanical Properties of Alginate Beads Using Ultrasound
,”
19th French Congress on Mechanics
,
Marseilles, France
, Aug. 24–28.
23.
Bhushan
,
B.
,
2004
,
Springer Handbook of Nanotechnology
,
Springer
,
Heidelberg, Germany
.10.1007/3-540-29838-X
24.
Khalil
,
S.
,
2005
, “
Deposition and Structural Formation of 3D Alginate Tissue Scaffolds
,” Ph.D. thesis, Drexel University, Philadelphia, PA.
25.
Miller
,
J. S.
,
Stevens
,
K. R.
,
Yang
,
M. T.
,
Baker
,
B. M.
,
Nguyen
,
D. T.
,
Cohen
,
D. M.
,
Toro
,
E.
,
Chen
,
A. A.
,
Galie
,
P. A.
,
Yu
,
X.
,
Chaturvedi
,
R.
,
Bhatia
,
S. N.
, and
Chen
,
C. S.
,
2012
, “
Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-Dimensional Tissues
,”
Nater. Mater.
,
11
(
9
), pp.
768
774
.10.1038/nmat3357
26.
Yan
,
J.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2013
, “
Laser-Assisted Printing of Alginate Long Tubes and Annular Constructs
,”
Biofabrication
,
5
(
1
), p.
015002
.10.1088/1758-5082/5/1/015002
27.
Lin
,
Y.
, and
Huang
,
Y.
,
2011
, “
Laser-Assisted Fabrication of Highly Viscous Alginate Microsphere
,”
J. Appl. Phys.
,
109
(
8
), p.
083107
.10.1063/1.3569863
You do not currently have access to this content.